1. Cheat Sheet
Document ID
PIPE-USER-105_AstrodataCheatSheet
A data package is available for download if you wish to run the examples included in this cheat sheet. Download it at:
To unpack:
$ cd <somewhere_convenient>
$ tar xvf ad_usermanual_datapkg-v1.tar
$ bunzip2 ad_usermanual/playdata/*.bz2
Then go to the ad_usermanual/playground
directory to run the examples.
1.1. Imports
Import astrodata
and gemini_instruments
:
>>> import astrodata
>>> import gemini_instruments
1.2. Basic read and write operations
Open a file:
>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
Get path and filename:
>>> ad.path
'../playdata/N20170609S0154.fits'
>>> ad.filename
'N20170609S0154.fits'
Write to a new file:
>>> ad.write(filename='new154.fits')
>>> ad.filename
N20170609S0154.fits
Overwrite the file:
>>> adnew = astrodata.open('new154.fits')
>>> adnew.filename
new154.fits
>>> adnew.write(overwrite=True)
1.3. Object structure
1.3.1. Description
The AstroData
object is assigned by “tags” that describe the
type of data it contains. The tags are drawn from rules defined in
gemini_instruments
and are based on header information.
When mapping a FITS file, each science pixel extension is loaded as a
NDAstroData
object. The list is zero-indexed. So FITS
extension 1 becomes element 0 of the AstroData
object. If a VAR
extension is present, it is loaded to the variance attribute of the
NDAstroData
. If a DQ
extension is present, it is loaded to the .mask
attribute of the NDAstroData
. SCI
, VAR
and DQ
are associated
through the EXTVER
keyword value.
In the file below, each AstroData
“extension” contains the pixel data,
then an error plane (.variance
) and a bad pixel mask plane (.mask
).
Table
can be attached to an extension, like OBJCAT, or to the
AstroData
object globally, like REFCAT. (In this case, OBJCAT is a
catalogue of the sources detected in the image, REFCAT is a reference catalog
for the area covered by the whole file.) If other 2D data needs to be
associated with an extension this can also be done, like here with OBJMASK,
a 2D mask matching the sources in the image.
>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
>>> ad.info()
Filename: ../playdata/N20170609S0154_varAdded.fits
Tags: ACQUISITION GEMINI GMOS IMAGE NORTH OVERSCAN_SUBTRACTED OVERSCAN_TRIMMED
PREPARED SIDEREAL
Pixels Extensions
Index Content Type Dimensions Format
[ 0] science NDAstroData (2112, 256) float32
.variance ndarray (2112, 256) float32
.mask ndarray (2112, 256) int16
.OBJCAT Table (6, 43) n/a
.OBJMASK ndarray (2112, 256) uint8
[ 1] science NDAstroData (2112, 256) float32
.variance ndarray (2112, 256) float32
.mask ndarray (2112, 256) int16
.OBJCAT Table (8, 43) n/a
.OBJMASK ndarray (2112, 256) uint8
[ 2] science NDAstroData (2112, 256) float32
.variance ndarray (2112, 256) float32
.mask ndarray (2112, 256) int16
.OBJCAT Table (7, 43) n/a
.OBJMASK ndarray (2112, 256) uint8
[ 3] science NDAstroData (2112, 256) float32
.variance ndarray (2112, 256) float32
.mask ndarray (2112, 256) int16
.OBJCAT Table (5, 43) n/a
.OBJMASK ndarray (2112, 256) uint8
Other Extensions
Type Dimensions
.REFCAT Table (245, 16)
1.3.2. Modifying the structure
Let’s first get our play data loaded. You are encouraged to do a
info()
before and after each structure-modification
step, to see how things change.
>>> from copy import deepcopy
>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> adcopy = deepcopy(ad)
>>> advar = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
Append an extension:
>>> adcopy.append(advar[3])
>>> adcopy.append(advar[3].data)
Delete an extension:
>>> del adcopy[5]
Delete and add variance and mask planes:
>>> var = adcopy[4].variance
>>> adcopy[4].variance = None
>>> adcopy[4].variance = var
Attach a table to an extension:
>>> adcopy[3].SMAUG = advar[0].OBJCAT.copy()
Attach a table to the AstroData
object:
>>> adcopy.DROGON = advar.REFCAT.copy()
Delete a table:
>>> del adcopy[3].SMAUG
>>> del adcopy.DROGON
1.5. Headers
The use of descriptors is favored over direct header access when retrieving values already represented by descriptors, and when writing instrument agnostic routines.
1.5.1. Descriptors
>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> ad.filter_name()
'open1-6&g_G0301'
>>> ad.filter_name(pretty=True)
'g'
>>> ad.gain() # uses a look-up table to get the correct values
[2.03, 1.97, 1.96, 2.01]
>>> ad.hdr['GAIN']
[1.0, 1.0, 1.0, 1.0] # the wrong values contained in the raw data.
>>> ad[0].gain()
2.03
>>> ad.gain()[0]
2.03
>>> ad.descriptors
('airmass', 'amp_read_area', 'ao_seeing', ...
...)
1.5.2. Direct access to header keywords
>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
1.5.2.1. Primary Header Unit
To see a print out of the full PHU:
>>> ad.phu
Get value from PHU:
>>> ad.phu['EXPTIME']
1.0
>>> default = 5.
>>> ad.phu.get('BOGUSKEY', default)
5.0
Set PHU keyword, with and without comment:
>>> ad.phu['NEWKEY'] = 50.
>>> ad.phu['ANOTHER'] = (30., 'Some comment')
Delete PHU keyword:
>>> del ad.phu['NEWKEY']
1.5.2.2. Pixel extension header
To see a print out of the full header for an extension or all the extensions:
>>> ad[0].hdr
>>> list(ad.hdr)
Get value from an extension header:
>>> ad[0].hdr['OVERSCAN']
469.7444308769482
>>> ad[0].hdr.get('OVERSCAN', default)
Get keyword value for all extensions:
>>> ad.hdr['OVERSCAN']
[469.7444308769482, 469.656175780001, 464.9815279808291, 467.5701178951787]
>>> ad.hdr.get('BOGUSKEY', 5.)
[5.0, 5.0, 5.0, 5.0]
Set extension header keyword, with and without comment:
>>> ad[0].hdr['NEWKEY'] = 50.
>>> ad[0].hdr['ANOTHER'] = (30., 'Some comment')
Delete an extension keyword:
>>> del ad[0].hdr['NEWKEY']
1.5.2.3. Table header
See the Tables section.
1.6. Pixel data
1.6.1. Arithmetics
Arithmetics with variance and mask propagation is offered for
+
, -
, *
, /
, and **
.
>>> ad_hcont = astrodata.open('../playdata/N20170521S0925_forStack.fits')
>>> ad_halpha = astrodata.open('../playdata/N20170521S0926_forStack.fits')
>>> adsub = ad_halpha - ad_hcont
>>> ad_halpha[0].data.mean()
646.11896
>>> ad_hcont[0].data.mean()
581.81342
>>> adsub[0].data.mean()
64.305862
>>> ad_halpha[0].variance.mean()
669.80664
>>> ad_hcont[0].variance.mean()
598.46667
>>> adsub[0].variance.mean()
1268.274
# In place multiplication
>>> ad_mult = deepcopy(ad)
>>> ad_mult.multiply(ad)
>>> ad_mult.multiply(5.)
# Using descriptors to operate in-place on extensions.
>>> from copy import deepcopy
>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
>>> ad_gain = deepcopy(ad)
>>> for (ext, gain) in zip(ad_gain, ad_gain.gain()):
... ext.multiply(gain)
>>> ad_gain[0].data.mean()
366.39545
>>> ad[0].data.mean()
180.4904
>>> ad[0].gain()
2.03
1.6.2. Other pixel data operations
>>> import numpy as np
>>> ad_halpha[0].mask[300:350,300:350] = 1
>>> np.mean(ad_halpha[0].data[ad_halpha[0].mask==0])
657.1994
>>> np.mean(ad_halpha[0].data)
646.11896
1.7. Tables
Tables are stored as astropy.table.Table
class. FITS tables are
represented in astrodata
as Table
and FITS headers are stored in the
NDAstroData
meta
attribute. Most table
access should be done through the Table
interface. The best reference is the
Astropy documentation itself. Below are just a few examples.
>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
Get column names:
>>> ad.REFCAT.colnames
Get column content:
>>> ad.REFCAT['zmag']
>>> ad.REFCAT['zmag', 'zmag_err']
Get content of row:
>>> ad.REFCAT[4] # 5th row
>>> ad.REFCAT[4:6] # 5th and 6th rows
Get content from specific row and column:
>>> ad.REFCAT['zmag'][4]
Add a column:
>>> new_column = [0] * len(ad.REFCAT)
>>> ad.REFCAT['new_column'] = new_column
Add a row:
>>> new_row = [0] * len(ad.REFCAT.colnames)
>>> new_row[1] = '' # Cat_Id column is of "str" type.
>>> ad.REFCAT.add_row(new_row)
Selecting value from criterion:
>>> ad.REFCAT['zmag'][ad.REFCAT['Cat_Id'] == '1237662500002005475']
>>> ad.REFCAT['zmag'][ad.REFCAT['zmag'] < 18.]
Rejecting numpy.nan
before doing something with the values:
>>> t = ad.REFCAT # to save typing.
>>> t['zmag'][np.where(np.isnan(t['zmag']), 99, t['zmag']) < 18.]
>>> t['zmag'].mean()
nan
>>> t['zmag'][np.where(~np.isnan(t['zmag']))].mean()
20.377306
If for some reason you need to access the FITS table headers, here is how to do it.
To see the FITS headers:
>>> ad.REFCAT.meta
>>> ad[0].OBJCAT.meta
To retrieve a specific FITS table header:
>>> ad.REFCAT.meta['header']['TTYPE3']
'RAJ2000'
>>> ad[0].OBJCAT.meta['header']['TTYPE3']
'Y_IMAGE'
To retrieve all the keyword names matching a selection:
>>> keynames = [key for key in ad.REFCAT.meta['header'] if key.startswith('TTYPE')]
1.8. Create new AstroData object
Basic header and data array set to zeros:
>>> from astropy.io import fits
>>> phu = fits.PrimaryHDU()
>>> pixel_data = np.zeros((100,100))
>>> hdu = fits.ImageHDU()
>>> hdu.data = pixel_data
>>> ad = astrodata.create(phu)
>>> ad.append(hdu, name='SCI')
or another way:
>>> hdu = fits.ImageHDU(data=pixel_data, name='SCI')
>>> ad = astrodata.create(phu, [hdu])
A Table
as an AstroData
object:
>>> from astropy.table import Table
>>> my_astropy_table = Table(list(np.random.rand(2,100)), names=['col1', 'col2'])
>>> phu = fits.PrimaryHDU()
>>> ad = astrodata.create(phu)
>>> ad.SMAUG = my_astropy_table
>>> phu = fits.PrimaryHDU()
>>> ad = astrodata.create(phu)
>>> ad.SMAUG = my_fits_table
WARNING: This last line will not run like the others as we have not defined
my_fits_table
. This is nonetheless how it is done if you had a FITS table.