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CHAPTER 1

Introduction

This is the AstroData User’s Manual. AstroData is a DRAGONS package. The current chapter covers basic concepts
like what is the astrodata package and how to install it (together with the other DRAGONS’ packages). Chapter
2 explains with more details what is AstroData and how the data is represented using it. Chapter 3 describes input
and output operations and how multi-extension (MEF) FITS files are represented. Chapter 4 provides information
regarding the TagSet class, its usage and a few advanced topics. In Chapter 5 you will find information about the
FITS headers and how to access/modify the metadata. The last two chapters, Chapter 6 and Chapter 7 cover more
details about how to read, manipulate and write pixel data and tables, respectively.

If you are looking for a quick reference, please, have a look on the AstroData Cheat Sheet.

1.1 Reference Documents

• DRAGONS Documentation

• AstroData Cheat Sheet

• Recipe System Users Manual

• Recipe System Programmers Manual

1.2 What is astrodata?

astrodata is a package that wraps together tools to represent internally astronomical datasets stored on disks and
to properly parse their metadata using the AstroData and the TagSet classes. astrodata provides uniform
interfaces for working on datasets from different instruments. Once a dataset has been opened with astrodata, the
object “knowns about itself”. Information like instrument, observation mode, and how to access headers, is readily
available through the uniform interface. All the details are coded inside the class associated with the instrument, that
class then provides the interface. The appropriate class is selected automatically when the file is opened and inspected
by astrodata.
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Currently astrodata implements a representation for Multi-Extension FITS (MEF) files. (Other representations
can be implemented.)

1.3 Installing Astrodata

The astrodata package has a few dependencies, astropy, numpy and others. The best way to get everything you
need is to install Anaconda, and the gemini stack from the AstroConda channel.

astrodata itself is part of DRAGONS. It is available from the repository, as tar file, or as a conda package. The bare
astrodata package does not do much by itself, it needs a companion instrument definitions package. For Gemini,
this is gemini_instruments, also included in DRAGONS.

1.3.1 Installing Anaconda and stacks from AstroConda

This is required whether you are installing DRAGONS from the repository, the tar file or the conda package.

1. Install Anaconda. Go to https://www.anaconda.com/download/ and install the latest 64-bit Anaconda, Python
2.7 or 3.x, it does not matter for the root installation. Since the Python world is moving away from 2.7,
choosing 3.x is probably better. The DRAGONS software has been tested under both 2.7 and 3.x.

2. Open a bash session. Anaconda requires bash. If you are not familiar with bash, note that the shell configura-
tion files are named .bash_profile and .bashrc. During the installation, a PATH setting has been
added to your .bash_profile or .bashrc to add the Anaconda bin directory to the PATH.

3. Activate Anaconda. Normal Python 3 installation puts the software in ~/anaconda3/.:

$ conda init

4. Configure the conda package manager to look in the AstroConda channel hosted by STScI, and in the
GEMINI Conda Channel. This is a one-time step. It affects current and future Anaconda installations
belonging to the same user on the same machine.:

$ conda config --add channels http://ssb.stsci.edu/astroconda
$ conda config --add channels http://astroconda.gemini.edu/public

5. Create an environment. To keep things clean, Anaconda offers virtual environments. Each project can use its
own environment. For example, if you do not want to modify the software packages needed for previous
project, just create a new one for the new project.

Here we set up an environment where the DRAGONS dependencies can be installed without affecting the
rest of the system when not using that virtual environement. The new virtual environment here is named
geminiconda. Note that one could set python to 3.6 instead of 2.7.

$ conda create -n geminiconda python=3.6 stsci gemini

6. Activate your new virtual environment.

$ conda activate geminiconda

1.3.2 Conda installation (recommended)

1. Create an environment. To keep things clean, Anaconda offers virtual environments. Each project can use its
own environment. For example, if you do not want to modify the software packages needed for previous
project, just create a new one for the new project.

1.3. Installing Astrodata 3
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Here we set up an environment where the DRAGONS dependencies can be installed without affecting the
rest of the system when not using that virtual environement. The new virtual environment here is named
geminiconda. Note that one could set python to 3.6 instead of 2.7.

$ conda create -n geminiconda python=3.6 stsci gemini

2. Activate your new virtual environment.

$ conda activate geminiconda

You are ready to use DRAGONS and AstroData.

To check for newer version:

$ conda search dragons

The * will show which version is installed if multiple packages are available.

To update to a newer version:

$ conda update dragons

If DRAGONS was not installed during the Anaconda and AstroConda stack installation, install it:

$ conda install dragons

1.3.3 Tarball installation

Tarball are available from the releases on the github repository page, https://github.com/GeminiDRSoftware/
DRAGONS/releases.

It can be installed with:

python setup.py install [--prefix=<your_choice>]

1.3.4 Using the latest software from the repository (expert)

The repository is available on github, on the Gemini Observatory Data Reduction Software page, https://github.com/
GeminiDRSoftware/DRAGONS. Either git clone or download the content of DRAGONS.

Once you have the source code, remember to set your PYTHONPATH to include the package’s location.

1.3.5 Smoke test the Astrodata installation

From the configured bash shell:

$ type python
python is hashed (<home_path>/anaconda3/envs/geminiconda/python)

Make sure that python is indeed pointing to the Anaconda environment you
have just set up.

1.3. Installing Astrodata 4
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$ python
>>> import astrodata
>>> import gemini_instruments

Expected result: Just a python prompt and no error messages.

1.4 Try it yourself

Try it yourself

Download the data package if you wish to follow along and run the examples. It is available at:

http://www.gemini.edu/sciops/data/software/datapkgs/ad_usermanual_datapkg-v1.tar

Unpack it:

$ cd <somewhere_convenient>
$ tar xvf ad_usermanual_datapkg-v1.tar
$ bunzip2 ad_usermanual/playdata/*.bz2

Then

$ cd ad_usermanual/playground
$ python

1.5 Astrodata Support

Astrodata is developed and supported by staff at the Gemini Observatory. Questions about the reduction of Gemini
data should be directed to the Gemini Helpdesk system at https://www.gemini.edu/sciops/helpdesk/
The github issue tracker can be used to report software bugs in DRAGONS.

1.4. Try it yourself 5
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CHAPTER 2

The AstroData Object

The AstroData object is an internal representation of a file on disk. As of this version, only a FITS layer has been
written, but AstroData itself is not limited to FITS.

The internal structure of the AstroData object makes uses of astropy.nddata.NDData, astropy.table,
and astropy.io.fits.Header, the latter simply because it is a convenient ordered dictionary.

Try it yourself

Download the data package (Try it yourself ) if you wish to follow along and run the examples. Then

$ cd <path>/ad_usermanual/playground
$ python

2.1 Global vs Extension-specific

At the very top level, the structure is divided in two types of information. In the first category, there is the information
that applies to the data globally, for example the information that would be stored in a FITS Primary Header Unit, a
table from a catalog that matches the RA and DEC of the field, etc. In the second category, there is the information
specific to individual science pixel extensions, for example the gain of the amplifier, the data themselves, the error on
those data, etc.

Let us look at an example. The info() method shows the content of the AstroData object and its organization,
from the user’s perspective.:

>>> import astrodata
>>> import gemini_instruments

>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
>>> ad.info()
Filename: N20170609S0154_varAdded.fits
Tags: ACQUISITION GEMINI GMOS IMAGE NORTH OVERSCAN_SUBTRACTED OVERSCAN_TRIMMED

PREPARED SIDEREAL

(continues on next page)
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(continued from previous page)

Pixels Extensions
Index Content Type Dimensions Format
[ 0] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) uint16

.OBJCAT Table (6, 43) n/a

.OBJMASK ndarray (2112, 256) uint8
[ 1] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) uint16

.OBJCAT Table (8, 43) n/a

.OBJMASK ndarray (2112, 256) uint8
[ 2] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) uint16

.OBJCAT Table (7, 43) n/a

.OBJMASK ndarray (2112, 256) uint8
[ 3] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) uint16

.OBJCAT Table (5, 43) n/a

.OBJMASK ndarray (2112, 256) uint8

Other Extensions
Type Dimensions

.REFCAT Table (245, 16)

The “Pixel Extensions” contain the pixel data. Each extension is represented individually in a list (0-indexed like all
Python lists). The science pixel data, its associated metadata (extension header), and any other pixel or table extensions
directly associated with that science pixel data are stored in a NDAstroData object which is a subclass of astropy
NDData. We will return to this structure later. An AstroData extension is accessed like any list: ad[0]. To access
the science pixels, one uses ad[0].data; for the object mask of the first extension, ad[0].OBJMASK.

In the example above, the “Other Extensions” at the bottom of the info() display contains a REFCAT table which
in this case is a list of stars from a catalog that overlaps the field of view of covered by the pixel data. The “Other
Extensions” are global extensions. They are not attached to any pixel extension in particular. To access a global
extension one simply uses the name of that extension: ad.REFCAT.

2.2 Organization of the Global Information

All the global information is stored in attributes of the AstroData object. The global headers, or Primary Header
Unit (PHU), is stored in the phu attribute as an astropy.io.fits.Header.

Any global tables, like REFCAT above, are stored in the private attribute _tables as a Python dictionary with the
name (eg. “REFCAT”) as the key. All tables are stored as astropy.table.Table. Access to those table is
done using the key directly as if it were a normal attributed, eg. ad.REFCAT. Header information for the table, if
read in from a FITS table, is stored in the meta attribute of the astropy.table.Table, eg. ad.REFCAT.
meta['header']. It is for information only, it is not used.

2.2. Organization of the Global Information 7
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2.3 Organization of the Extension-specific Information

The pixel data are stored in the AstroData attribute nddata as a list of NDAstroData object. The
NDAstroData object is a subclass of astropy NDData and it is fully compatible with any function expecting an
NDData as input. The pixel extensions are accessible through slicing, eg. ad[0] or even ad[0:2]. A slice of an
AstroData object is an AstroData object, and all the global attributes are kept. For example:

>>> ad[0].info()
Filename: N20170609S0154_varAdded.fits
Tags: ACQUISITION GEMINI GMOS IMAGE NORTH OVERSCAN_SUBTRACTED OVERSCAN_TRIMMED

PREPARED SIDEREAL

Pixels Extensions
Index Content Type Dimensions Format
[ 0] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) uint16

.OBJCAT Table (6, 43) n/a

.OBJMASK ndarray (2112, 256) uint8

Other Extensions
Type Dimensions

.REFCAT Table (245, 16)

Note how REFCAT is still present.

The science data is accessed as ad[0].data, the variance as ad[0].variance, and the data quality plane as
ad[0].mask. Those familiar with astropy NDData will recognize the structure “data, error, mask”, and will notice
some differences. First AstroData uses the variance for the error plane, not the standard deviation. Another differ-
ences will be evident only when one looks at the content of the mask. NDData masks contain booleans, AstroData
masks are uint16 bit mask that contains information about the type of bad pixels rather than just flagging them a
bad or not. Since 0 is equivalent to False (good pixel), the AstroData mask is fully compatible with the NDData
mask.

Header information for the extension is stored in the NDAstroData meta attribute. All table and pixel extensions
directly associated with the science extension are also stored in the meta attribute.

Technically, an extension header is located in ad.nddata[0].meta['header']. However, for obviously
needed convenience, the normal way to access that header is ad[0].hdr.

Tables and pixel arrays associated with a science extension are stored in ad.nddata[0].meta['other'] as a
dictionary keyed on the array name, eg. OBJCAT, OBJMASK. As it is for global tables, astropy tables are used for
extension tables. The extension tables and extra pixel arrays are accesses, like the global tables, by using the table
name rather than the long format, for example ad[0].OBJCAT and ad[0].OBJMASK.

When reading FITS Table, the header information is stored in the meta['header'] of the table, eg. ad[0].
OBJCAT.meta['header']. That information is not used, it is simply a place to store what was read from disk.

The header of a pixel extension directly associate with the science extension should match that of the science extension.
Therefore such headers are not stored in AstroData. For example, the header of ad[0].OBJMASK is the same as
that of the science, ad[0].hdr.

2.4 A Note on Memory Usage

When an file is opened, the headers are loaded into memory, but the pixels are not. The pixel data are loaded into
memory only when they are first needed. This is not real “memory mapping”, more of a delayed loading. This is

2.3. Organization of the Extension-specific Information 8
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useful when someone is only interested in the metadata, especially when the files are very large.

2.4. A Note on Memory Usage 9



CHAPTER 3

Input and Output Operations and Extension Manipulation - MEF

AstroData is not intended to be Multi-Extension FITS (MEF) centric. The core is independent of the file format.
At Gemini, our data model uses MEF. Therefore we have implemented a FITS handler that maps a MEF to the internal
AstroData representation. A different handler can be implemented for a different file format.

In this chapter, we present examples that will help the reader understand how to access the information stored in a
MEF with the AstroData object and understand that mapping.

Try it yourself

Download the data package (Try it yourself ) if you wish to follow along and run the examples. Then

$ cd <path>/ad_usermanual/playground
$ python

3.1 Imports

Before doing anything, you need to import AstroData and the Gemini instrument configuration package
gemini_instruments.

>>> import astrodata
>>> import gemini_instruments

3.2 Open and access existing dataset

3.2.1 Read in the dataset

The file on disk is loaded into the AstroData class associated with the instrument the data is from. This association
is done automatically based on header content.

10
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>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> type(ad)
<class 'gemini_instruments.gmos.adclass.AstroDataGmos'>

From now on, ad knows it is GMOS data. It knows how to access its headers and when using the Recipe System
(recipe_system), it will trigger the selection of the GMOS primitives and recipes.

The original path and filename are stored in the object. If you were to write the AstroData object to disk without
specifying anything, those path and filename would be used.

>>> ad.path
'../playdata/N20170609S0154.fits'
>>> ad.filename
'N20170609S0154.fits'

3.2.2 Accessing the content of a MEF file

Accessing pixel data, headers, tables will be covered in details in following chapters. Here we just introduce the basic
content interface.

For details on the AstroData structure, please refer to the previous chapter.

AstroData uses NDData as the core of its structure. Each FITS extension becomes a NDAstroData object,
subclassed from NDData, and is added to a list.

Pixel data

To access pixel data, the list index and the .data attribute are used. That returns a numpy.ndarray. The list of
NDAstroData is zero-indexed. Extension number 1 in a MEF is index 0 in an |AstroData| object.

>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
>>> data = ad[0].data
>>> type(data)
<type 'numpy.ndarray'>
>>> data.shape
(2112, 256)

Remember that in a ndarray the y-axis is the first number.

The variance and data quality planes, the VAR and DQ planes in Gemini MEF files, are represented by the .
variance and .mask attributes, respectively. They are not their own “extension”, they don’t have their own index
in the list, unlike in a MEF. They are attached to the pixel data, packaged together by the NDAstroData object. They
are represented as numpy.ndarray just like the pixel data

>>> var = ad[0].variance
>>> dq = ad[0].mask

Tables

Tables in the MEF file will also be loaded into the AstroData object. If a table is associated with a specific science
extension through the EXTVER header, that table will be packaged within the same AstroData extension as the pixel
data. The AstroData “extension” is the NDAstroData object plus any table or other pixel array. If the table is not
associated with a specific extension and applies globally, it will be added to the AstroData object as a global addition.

3.2. Open and access existing dataset 11
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No indexing will be required to access it. In the example below, one OBJCAT is associated with each extension, while
the REFCAT has a global scope

>>> ad.info()
Filename: ../playdata/N20170609S0154_varAdded.fits
Tags: ACQUISITION GEMINI GMOS IMAGE NORTH OVERSCAN_SUBTRACTED OVERSCAN_TRIMMED

PREPARED SIDEREAL

Pixels Extensions
Index Content Type Dimensions Format
[ 0] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) uint16

.OBJCAT Table (6, 43) n/a

.OBJMASK ndarray (2112, 256) uint8
[ 1] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) uint16

.OBJCAT Table (8, 43) n/a

.OBJMASK ndarray (2112, 256) uint8
[ 2] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) uint16

.OBJCAT Table (7, 43) n/a

.OBJMASK ndarray (2112, 256) uint8
[ 3] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) uint16

.OBJCAT Table (5, 43) n/a

.OBJMASK ndarray (2112, 256) uint8

Other Extensions
Type Dimensions

.REFCAT Table (245, 16)

The tables are stored internally as astropy.table.Table objects.

>>> ad[0].OBJCAT
<Table length=6>
NUMBER X_IMAGE Y_IMAGE ... REF_MAG_ERR PROFILE_FWHM PROFILE_EE50
int32 float32 float32 ... float32 float32 float32
------ ------- ------- ... ----------- ------------ ------------

1 283.461 55.4393 ... 0.16895 -999.0 -999.0
...
>>> type(ad[0].OBJCAT)
<class 'astropy.table.table.Table'>

>>> refcat = ad.REFCAT
>>> type(refcat)
<class 'astropy.table.table.Table'>

Headers

Headers are stored in the NDAstroData .meta attribute as astropy.io.fits.Header objects, which is
a form of Python ordered dictionaries. Headers associated with extensions are stored with the corresponding
NDAstroData object. The MEF Primary Header Unit (PHU) is stored “globally” in the AstroData object. Note
that when slicing an AstroData object, for example copying over just the first extension, the PHU will follow. The

3.2. Open and access existing dataset 12
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slice of an AstroData object is an AstroData object. Headers can be accessed directly, or for some predefined
concepts, the use of Descriptors is preferred. See the chapters on headers for details.

Using Descriptors:

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> ad.filter_name()
'open1-6&g_G0301'
>>> ad.filter_name(pretty=True)
'g'

Using direct header access:

>>> ad.phu['FILTER1']
'open1-6'
>>> ad.phu['FILTER2']
'g_G0301'

Accessing the extension headers:

>>> ad.hdr['CCDSEC']
['[1:512,1:4224]', '[513:1024,1:4224]', '[1025:1536,1:4224]', '[1537:2048,1:4224]']
>>> ad[0].hdr['CCDSEC']
'[1:512,1:4224]'

With descriptors:
>>> ad.array_section(pretty=True)
['[1:512,1:4224]', '[513:1024,1:4224]', '[1025:1536,1:4224]', '[1537:2048,1:4224]']

3.3 Modify Existing MEF Files

Before you start modify the structure of an AstroData object, you should be familiar with it. Please make sure that
you have read the previous chapter on the structure of the AstroData object.

3.3.1 Appending an extension

In this section, we take an extension from one AstroData object and append it to another. Because we are mapping
a FITS file, the EXTVER keyword gets automatically updated to the next available value to ensure that when the
AstroData object is written back to disk as MEF, it will be coherent.

Here is an example appending a whole AstroData extension, with pixel data, variance, mask and tables.

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> advar = astrodata.open('../playdata/N20170609S0154_varAdded.fits')

>>> ad.info()
Filename: ../playdata/N20170609S0154.fits
Tags: ACQUISITION GEMINI GMOS IMAGE NORTH RAW SIDEREAL UNPREPARED
Pixels Extensions
Index Content Type Dimensions Format
[ 0] science NDAstroData (2112, 288) uint16
[ 1] science NDAstroData (2112, 288) uint16
[ 2] science NDAstroData (2112, 288) uint16
[ 3] science NDAstroData (2112, 288) uint16

(continues on next page)
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(continued from previous page)

>>> ad.append(advar[3])
>>> ad.info()
Filename: ../playdata/N20170609S0154.fits
Tags: ACQUISITION GEMINI GMOS IMAGE NORTH RAW SIDEREAL UNPREPARED
Pixels Extensions
Index Content Type Dimensions Format
[ 0] science NDAstroData (2112, 288) uint16
[ 1] science NDAstroData (2112, 288) uint16
[ 2] science NDAstroData (2112, 288) uint16
[ 3] science NDAstroData (2112, 288) uint16
[ 4] science NDAstroData (2112, 256) float32

.variance ndarray (2112, 256) float32

.mask ndarray (2112, 256) int16

.OBJCAT Table (5, 43) n/a

.OBJMASK ndarray (2112, 256) uint8

>>> ad[4].hdr['EXTVER']
5
>>> advar[3].hdr['EXTVER']
4

As you can see above, the fourth extension of advar, along with everything it contains was appended at the end of
the first AstroData object. Also, note that the EXTVER of the extension in advar was 4, but once appended to
ad, it had to be changed to the next available integer, 5, numbers 1 to 4 being already used by ad’s own extensions.

In this next example, we are appending only the pixel data, leaving behind the other associated data. The header
associated with that data does follow however.

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> advar = astrodata.open('../playdata/N20170609S0154_varAdded.fits')

>>> ad.append(advar[3].data)
>>> ad.info()
Filename: ../playdata/N20170609S0154.fits
Tags: ACQUISITION GEMINI GMOS IMAGE NORTH RAW SIDEREAL UNPREPARED
Pixels Extensions
Index Content Type Dimensions Format
[ 0] science NDAstroData (2112, 288) uint16
[ 1] science NDAstroData (2112, 288) uint16
[ 2] science NDAstroData (2112, 288) uint16
[ 3] science NDAstroData (2112, 288) uint16
[ 4] science NDAstroData (2112, 256) float32

Notice how a new extension was created but variance, mask, the OBJCAT table and OBJMASK image were not
copied over. Only the science pixel data was copied over.

Please note, there is no implementation for the “insertion” of an extension.

3.3.2 Removing an extension or part of one

Removing an extension or a part of an extension is straightforward. The Python command del() is used on the item
to remove. Below are a few examples, but first let us load a file

>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
>>> ad.info()

3.3. Modify Existing MEF Files 14
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As you go through these examples, check the new structure with ad.info() after every removal to see how the
structure has changed.

Deleting a whole AstroData extension, the fourth one

>>> del ad[3]

Deleting only the variance array from the second extension

>>> ad[1].variance = None

Deleting a table associated with the first extension

>>> del ad[0].OBJCAT

Deleting a global table, not attached to a specific extension

>>> del ad.REFCAT

3.4 Writing back to disk

The AstroDataFits layer takes care of converting the AstroData object back to a MEF file on disk. When
writing to disk, one should be aware of the path and filename information associated with the AstroData object.

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> ad.path
'../playdata/N20170609S0154.fits'
>>> ad.filename
'N20170609S0154.fits'

3.4.1 Writing to a new file

There are various ways to define the destination for the new FITS file. The most common and natural way is

>>> ad.write('new154.fits')

>>> ad.write('new154.fits', overwrite=True)

This will write a FITS file named ‘new154.fits’ in the current directory. With overwrite=True, it will overwrite
the file if it already exists. A path can be prepended to the filename if the current directory is not the destination. Note
that ad.filename and ad.path have not changed, we have just written to the new file, the AstroData object is
in no way associated with that new file.

>>> ad.path
'../playdata/N20170609S0154.fits'
>>> ad.filename
'N20170609S0154.fits'

If you want to create that association, the ad.filename and ad.path needs to be modified first. For example:

>>> ad.filename = 'new154.fits'
>>> ad.write()

(continues on next page)
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>>> ad.path
'../playdata/new154.fits'
>>> ad.filename
'new154.fits'

Changing ad.filename also changes the filename in the ad.path. The sequence above will write ‘new154.fits’
not in the current directory but rather to the directory that is specified in ad.path.

WARNING: ad.write() has an argument named filename. Setting filename in the call to ad.write(),
as in ad.write(filename='new154.fits') will NOT modify ad.filename or ad.path. The two “file-
names”, one a method argument the other a class attribute have no association to each other.

3.4.2 Updating an existing file on disk

Updating an existing file on disk requires explicitly allowing overwrite.

If you have not written ‘new154.fits’ to disk yet (from previous section)

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> ad.write('new154.fits')

Now let’s open ‘new154.fits’, and write to it

>>> adnew = astrodata.open('new154.fits')
>>> adnew.write(overwrite=True)

3.5 Create New MEF Files

A new MEF file can be created from an existing, maybe modified, file or it can be created from scratch. We discuss
both cases here.

3.5.1 Create New Copy of MEF Files

To create a new copy of a MEF file, modified or not, the user has already been given most of the tools in the sections
above. Yet, let’s throw a couple examples for completeness.

Basic example

As seen above, a MEF file can be opened with astrodata, the AstroData object can be modified (or not), and
then written back to disk under a new name.

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
... optional modifications here ...
>>> ad.write('newcopy.fits')

Needing true copies in memory

Sometimes it is a true copy in memory that is needed. This is not specific to MEF. In Python, doing something like
adnew = ad does not create a new copy of the AstrodData object; it just gives it a new name. If you modify adnew
you will be modify ad too. They point to the same block of memory.

3.5. Create New MEF Files 16
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To create a true independent copy, the deepcopy utility needs to be used.

>>> from copy import deepcopy
>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> adcopy = deepcopy(ad)

Be careful using deepcopy, you memory could balloon really fast. Use it only when truly needed.

3.5.2 Create New MEF Files from Scratch

Before one creates a new MEF file on disk, one has to create the AstroData object that will be eventually written to
disk. The AstroData object created also needs to know that it will have to be written using the MEF format. This is
fortunately handled fairly transparently by astrodata.

The key to associating the FITS data provider to the AstroData object is simply to create the AstroData object
from astropy.io.fits header objects. Those will be recognized by astrodata as FITS and the constructor
for FITS will be used. The user does not need to do anything else special. Here is how it is done.

Create a MEF with basic header and data array set to zeros

>>> import numpy as np
>>> from astropy.io import fits

>>> phu = fits.PrimaryHDU()

>>> pixel_data = np.zeros((100,100))

>>> hdu = fits.ImageHDU()
>>> hdu.data = pixel_data

>>> ad = astrodata.create(phu)
>>> ad.append(hdu, name='SCI')

or another way to do the last two blocs:
>>> hdu = fits.ImageHDU(data=pixel_data, name='SCI')
>>> ad = astrodata.create(phu, [hdu])

Then it is just a matter of calling ad.write('somename.fits') on that new Astrodata object.

Represent a table as a FITS binary table in an AstroData object

One first needs to create a table, either an astropy.table.Table or a BinTableHDU. See the astropy docu-
mentation on tables and this manual’s section dedicated to tables for more information.

In the first example, we assume that my_astropy_table is a Table ready to be attached to an AstroData
object. (Warning: we have not created my_astropy_table therefore the example below will not run, though this
is how it would be done.)

>>> phu = fits.PrimaryHDU()
>>> ad = astrodata.create(phu)

>>> astrodata.add_header_to_table(my_astropy_table)
>>> ad.append(my_astropy_table, name='BOB')
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In the second example, we start with a FITS BinTableHDU and attach it to a new AstroData object. (Again, we
have not created my_fits_table so the example will not run.)

>>> phu = fits.PrimaryHDU()
>>> ad = astrodata.create(phu)
>>> ad.append(my_fits_table, name='BILL')

As before, once the AstroData object is constructed, the ad.write() method can be used to write it to disk as a
MEF file.
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CHAPTER 4

Astrodata Tags

4.1 What are the Astrodata Tags?

The Astrodata Tags identify the data represented in the AstroData object. When a file on disk is opened
with astrodata, the headers are inspected to identify which specific AstroData class needs to be loaded,
AstroDataGmos, AstroDataNiri, etc. Based on the class the data is associated with, a list of “tags” will
be defined. The tags will tell whether the file is a flatfield or a dark, if it is a raw dataset, or if it has been processed
by the recipe system, if it is imaging or spectroscopy. The tags will tell the users and the system what that data is and
also give some information about the processing status.

As a side note, the tags are used by DRAGONS Recipe System to match recipes and primitives to the data.

4.2 Using the Astrodata Tags

Try it yourself

Download the data package (Try it yourself ) if you wish to follow along and run the examples. Then

$ cd <path>/ad_usermanual/playground
$ python

Before doing anything, you need to import astrodata and the Gemini instrument configuration package
(gemini_instruments).

>>> import astrodata
>>> import gemini_instruments

Let us open a Gemini dataset and see what tags we get:

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> ad.tags
set(['RAW', 'GMOS', 'GEMINI', 'NORTH', 'SIDEREAL', 'UNPREPARED', 'IMAGE', 'ACQUISITION
→˓']) (continues on next page)
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The file we loaded is raw, GMOS North data. It is a 2D image and it is an acquisition image, not a science observation.
The “UNPREPARED” tag indicates that the file has never been touched by the Recipe System which runs a “prepare”
primitive as the first step of each recipe.

Let’s try another

>>> ad = astrodata.open('../playdata/N20170521S0925_forStack.fits')
>>> ad.tags
set(['GMOS', 'GEMINI', 'NORTH', 'SIDEREAL', 'OVERSCAN_TRIMMED', 'IMAGE',
'OVERSCAN_SUBTRACTED', 'PREPARED'])

This file is a science GMOS North image. It has been processed by the Recipe System. The overscan level has been
subtracted and the section has been trimmed away. The tags do NOT include all the processing steps. Rather, at least
from the time being, it focuses on steps that matter when associating calibrations.

The tags can be used when coding. For example:

>>> if 'GMOS' in ad.tags:
... print('I am GMOS')
... else:
... print('I am these instead:', ad.tags)
...

And:

>>> if {'IMAGE', 'GMOS'}.issubset(ad.tags):
... print('I am a GMOS Image.')
...

4.3 Using typewalk

In DRAGONS, there is a convenience tool that will list the Astrodata tags for all the FITS file in a directory.

To try it, from the shell, not Python, go to the “playdata” directory and run typewalk

% cd <path>/ad_usermanual/playdata
% typewalk

directory: /data/workspace/ad_usermanual/playdata
N20170521S0925_forStack.fits ...... (GEMINI) (GMOS) (IMAGE) (NORTH) (OVERSCAN_
→˓SUBTRACTED) (OVERSCAN_TRIMMED) (PREPARED) (PROCESSED_SCIENCE) (SIDEREAL)
N20170521S0926_forStack.fits ...... (GEMINI) (GMOS) (IMAGE) (NORTH) (OVERSCAN_
→˓SUBTRACTED) (OVERSCAN_TRIMMED) (PREPARED) (PROCESSED_SCIENCE) (SIDEREAL)
N20170609S0154.fits ............... (ACQUISITION) (GEMINI) (GMOS) (IMAGE) (NORTH)
→˓(RAW) (SIDEREAL) (UNPREPARED)
N20170609S0154_varAdded.fits ...... (ACQUISITION) (GEMINI) (GMOS) (IMAGE) (NORTH)
→˓(OVERSCAN_SUBTRACTED) (OVERSCAN_TRIMMED) (PREPARED) (SIDEREAL)
Done DataSpider.typewalk(..)

typewalk can be used to select specific data based on tags, and even create lists

% typewalk --tags RAW
directory: /data/workspace/ad_usermanual/playdata

(continues on next page)
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N20170609S0154.fits ............... (ACQUISITION) (GEMINI) (GMOS) (IMAGE) (NORTH)
→˓(RAW) (SIDEREAL) (UNPREPARED)
Done DataSpider.typewalk(..)

% typewalk --tags RAW -o rawfiles.lis
% cat rawfiles.lis
# Auto-generated by typewalk, vv2.0 (beta)
# Written: Tue Mar 6 13:06:06 2018
# Qualifying types: RAW
# Qualifying logic: AND
# -----------------------
/data/workspace/ad_usermanual/playdata/N20170609S0154.fits

4.4 Creating New Astrodata Tags [Advanced Topic]

For proper and complete instructions on how to create Astrodata Tags and the AstroData class that hosts the tags,
the reader is invited to refer to the Astrodata Programmer Manual. Here we provide a simple introduction that might
help some readers better understand Astrodata Tags, or serve as a quick reference for those who have written Astrodata
Tags in the past but need a little refresher.

The Astrodata Tags are defined in an AstroData class. The AstroData class specific to an instrument is located
in a separate package, not in astrodata. For example, for Gemini instruments, all the various AstroData classes
are contained in the gemini_instruments package.

An Astrodata Tag is a function within the instrument’s AstroData class. The tag function is distinguished from
normal functions by applying the astro_data_tag() decorator to it. The tag function returns a astrodata.
TagSet.

For example:

class AstroDataGmos(AstroDataGemini):
...
@astro_data_tag
def _tag_arc(self):

if self.phu.get('OBSTYPE) == 'ARC':
return TagSet(['ARC', 'CAL'])

The tag function looks at the headers and if the keyword “OBSTYPE” is set to “ARC”, the tags “ARC” and “CAL”
(for calibration) will be assigned to the AstroData object.

A whole suite of such tag functions is needed to fully characterize all types of data an instrument can produce.

Tags are about what the dataset is, not it’s flavor. The Astrodata “descriptors” (see the section on Metadata and
Headers) will describe the flavor. For example, tags will say that the data is an image, but the descriptor will say
whether is B-band or R-band. Tags are used for recipe and primitive selection. A way to understand the difference
between a tag and a descriptor is in terms of the recipe that will be selected: A GMOS image will use the same recipe
whether it’s a B-band or R-band image. However, a GMOS longslit spectrum will need a very different recipe. A bias
is reduced differently from a science image, there should be tag differentiating a bias from a science image. (There is
for GMOS.)

For more information on adding to Astrodata, see the Astrodata Programmer Manual.
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CHAPTER 5

Metadata and Headers

Try it yourself

Download the data package (Try it yourself ) if you wish to follow along and run the examples. Then

$ cd <path>/ad_usermanual/playground
$ python

You need to import Astrodata and the Gemini instrument configuration package.

>>> import astrodata
>>> import gemini_instruments

5.1 Astrodata Descriptors

We show in this chapter how to use the Astrodata Descriptors. But first let’s explain what they are.

Astrodata Descriptors provide a “header-to-concept” mapping that allows the user to access header information from
a unique interface, regardless of which instrument the dataset is from. Like for the Astrodata Tags, the mapping
is coded in a configuration package separate from core Astrodata. For Gemini instruments, that package is named
gemini_instruments.

For example, if the user is interested to know the effective filter used for an observation, normally one needs to know
which specific keyword or set of keywords to look at for that instrument. However, once the concept of “filter” is
coded as a Descriptor, the user only needs to call the filter_name() descriptor to retrieve the information.

The Descriptors are closely associated with the Astrodata Tags. In fact, they are implemented in the same AstroData
class as the tags. Once the specific AstroData class is selected (upon opening the file), all the tags and descriptors
for that class are defined. For example, all the descriptor functions of GMOS data, ie. the functions that map a
descriptor concept to the actual header content, are defined in the AstroDataGmos class.

This is all completely transparent to the user. One simply opens the data file and all the descriptors are ready to be
used.

22



Astrodata User Manual, Release 2.1.0

Note: Of course if the Descriptors have not be implemented for that specific data, they will not work. They should
all be defined for Gemini data. For other sources, the headers can be accessed directly, one keyword at a time. This
type of access is discussed below. This is also useful when the information needed is not associated with one of the
standard descriptors.

To get the list of descriptors available for an AstroData object:

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> ad.descriptors
('airmass', 'amp_read_area', 'ao_seeing', ...

...)

Most Descriptor names are readily understood, but one can get a short description of what the Descriptor refers to by
calling the Python help function. For example:

>>> help(ad.airmass)
>>> help(ad.filter_name)

The full list of standard descriptors is available in the Appendix List of Gemini Standard Descriptors.

5.2 Accessing Metadata

5.2.1 Accessing Metadata with Descriptors

Whenever possible the Descriptors should be used to get information from headers. This allows for maximum re-
usability of the code as it will then work on any datasets with an AstroData class.

Here are a few examples using Descriptors:

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')

>>> #--- print a value
>>> print('The airmass is : ', ad.airmass())

>>> #--- use a value to control the flow
>>> if ad.exposure_time() < 240.:
... print('This is a short exposure.')
... else:
... print('This is a long exposure.')
...

>>> #--- multiply all extensions by their respective gain
>>> for ext, gain in zip(ad, ad.gain()):
... ext *= gain
...

>>> #--- do arithmetics
>>> fwhm_pixel = 3.5
>>> fwhm_arcsec = fwhm_pixel * ad.pixel_scale()

The return values for Descriptors depend on the nature of the information being requested and the number of extensions
in the AstroData object. When the value has words, it will be string, if it is a number it will be a float or an integer.
The dataset used in this section has 4 extensions. When the descriptor value can be different for each extension, the
descriptor will return a Python list.
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>>> ad.airmass()
1.089
>>> ad.gain()
[2.03, 1.97, 1.96, 2.01]
>>> ad.filter_name()
'open1-6&g_G0301'

Some descriptors accept arguments. For example:

>>> ad.filter_name(pretty=True)
'g'

A full list of standard descriptors is available in the Appendix List of Gemini Standard Descriptors.

5.2.2 Accessing Metadata Directly

Not all header content is mapped to Descriptors, nor should it. Direct access is available for header content falling
outside the scope of the descriptors.

One important thing to keep in mind is that the PHU (Primary Header Unit) and the extension headers are accessed
slightly differently. The attribute phu needs to used for the PHU, and hdr for the extension headers.

Here are some examples of direct header access:

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')

>>> #--- Get keyword value from teh PHU
>>> ad.phu['AOFOLD']
'park-pos.'

>>> #--- Get keyword value from a specific extension
>>> ad[0].hdr['CRPIX1']
511.862999160781

>>> #--- Get keyword value from all the extension in one call.
>>> ad.hdr['CRPIX1']
[511.862999160781, 287.862999160781, -0.137000839218696, -224.137000839219]

5.2.3 Whole Headers

Entire headers can be retrieved as fits Header objects:

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> type(ad.phu)
<class 'astropy.io.fits.header.Header'>
>>> type(ad[0].hdr)
<class 'astropy.io.fits.header.Header'>

In interactive mode, it is possible to print the headers on the screen as follow

>>> ad.phu
SIMPLE = T / file does conform to FITS standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 0 / number of data axes
....

(continues on next page)
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>>> ad[0].hdr
XTENSION= 'IMAGE ' / IMAGE extension
BITPIX = 16 / number of bits per data pixel
NAXIS = 2 / number of data axes
....

5.3 Updating, Adding and Deleting Metadata

Header cards can be updated, added to, or deleted from the headers. The PHU and the extensions headers are again
accessed in a mostly identical way with phu and hdr, respectively.

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')

Add and update a keyword, without and with comment:

>>> ad.phu['NEWKEY'] = 50.
>>> ad.phu['NEWKEY'] = (30., 'Updated PHU keyword')

>>> ad[0].hdr['NEWKEY'] = 50.
>>> ad[0].hdr['NEWKEY'] = (30., 'Updated extension keyword')

Delete a keyword:

>>> del ad.phu['NEWKEY']
>>> del ad[0].hdr['NEWKEY']

5.4 Adding Descriptors [Advanced Topic]

For proper and complete instructions on how to create Astrodata Descriptors, the reader is invited to refer to the
Astrodata Programmer Manual. Here we provide a simple introduction that might help some readers better understand
Astrodata Descriptors, or serve as a quick reference for those who have written Astrodata Descriptor in the past but
need a little refresher.

The Astrodata Descriptors are defined in an AstroData class. The AstroData class specific to an instrument is
located in a separate package, not in astrodata. For example, for Gemini instruments, all the various AstroData
classes are contained in the gemini_instruments package.

An Astrodata Descriptor is a function within the instrument’s AstroData class. The descriptor function is dis-
tinguished from normal functions by applying the @astro_data_descriptor decorator to it. The descriptor
function returns the value(s) using a Python type, int, float, string, list; it depends on the value being
returned. There is no special “descriptor” type.

Here is an example of code defining a descriptor:

class AstroDataGmos(AstroDataGemini):
...
@astro_data_descriptor
def detector_x_bin(self):

def _get_xbin(b):
try:

return int(b.split()[0])

(continues on next page)
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except (AttributeError, ValueError):
return None

binning = self.hdr.get('CCDSUM')
if self.is_single:

return _get_xbin(binning)
else:

xbin_list = [_get_xbin(b) for b in binning]
# Check list is single-valued
return xbin_list[0] if xbin_list == xbin_list[::-1] else None

This descriptor returns the X-axis binning as a integer when called on a single extension, or an object with only one
extension, for example after the GMOS CCDs have been mosaiced. If there are more than one extensions, it will return
a Python list or an integer if the binning is the same for all the extensions.

Gemini has defined a standard list of descriptors that should be defined one way or another for each instrument to
ensure the re-usability of our algorithms. That list is provided in the Appendix List of Gemini Standard Descriptors.

For more information on adding to Astrodata, see the Astrodata Programmer Manual.
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CHAPTER 6

Pixel Data

Try it yourself

Download the data package (Try it yourself ) if you wish to follow along and run the examples. Then

$ cd <path>/ad_usermanual/playground
$ python

Then import core astrodata and the Gemini astrodata configurations.

>>> import astrodata
>>> import gemini_instruments

6.1 Operate on Pixel Data

The pixel data are stored in the AstroData object as a list of NDAstroData objects. The NDAstroData is a
subclass of Astropy’s NDData class which combines in one “package” the pixel values, the variance, and the data
quality plane or mask. The data can be retrieved as standard NumPy ndarray.

In the sections below, we will present several typical examples of data manipulation. But first let’s start with a quick
example on how to access the pixel data.

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')

>>> the_data = ad[1].data
>>> type(the_data)
<class 'numpy.ndarray'>

>>> # Loop through the extensions
>>> for ext in ad:
... the_data = ext.data
... print(the_data.sum())
...
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In this example, we first access the pixels for the second extensions. Remember that in Python, list are zero-indexed,
hence we access the second extension as ad[1]. The .data attribute contains a numpy ndarray. In the for-loop,
for each extension, we get the data and use the numpy .sum() method to sum the pixel values. Anything that can be
done with a ndarray can be done on AstroData pixel data.

6.2 Arithmetic on AstroData Objects

AstroData objects support basic in-place arithmetics with these methods:

addition .add()
subtraction .subtract()
multiplication .multiply()
division .divide()

Normal, not in-place, arithmetics is also possible using the standard operators, +, -, *, and /.

The big advantage of using AstroData to do arithmetics is that the variance and mask, if present, will be propagated
through to the output AstroData object. We will explore the variance propagation in the next section and mask
usage later in this chapter.

6.2.1 Simple operations

Here are a few examples of arithmetics on AstroData objects.:

>>> ad = astrodata.open('../playdata/N20170521S0925_forStack.fits')

>>> # Addition
>>> ad.add(50.)
>>> ad = ad + 50.
>>> ad += 50.

>>> # Subtraction
>>> ad.subtract(50.)
>>> ad = ad - 50.
>>> ad -= 50.

>>> # Multiplication (Using a descriptor)
>>> ad.multiply(ad.exposure_time())
>>> ad = ad * ad.exposure_time()
>>> ad *= ad.exposure_time()

>>> # Division (Using a descriptor)
>>> ad.divide(ad.exposure_time())
>>> ad = ad / ad.exposure_time()
>>> ad /= ad.exposure_time()

When the syntax adout = adin + 1 is used, the output variable is a copy of the original. In the examples above
we reassign the result back onto the original. The two other forms, ad.add() and ad += are in-place operations.

When a descriptor returns a list because the value changes for each extension, a for-loop is needed:

>>> for (ext, gain) in zip(ad, ad.gain()):
... ext.multiply(gain)
...
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If you want to do the above but on a new object, leaving the original unchanged, use deepcopy first.

>>> from copy import deepcopy
>>> adcopy = deepcopy(ad)
>>> for (ext, gain) in zip(adcopy, adcopy.gain()):
... ext.multiply(gain)
...

6.2.2 Operator Precedence

The AstroData arithmetics methods can be stringed together but beware that there is no operator precedence when
that is done. For arithmetics that involve more than one operation, it is probably safer to use the normal Python
operator syntax. Here is a little example to illustrate the difference.

>>> ad.add(5).multiply(10).subtract(5)

>>> # means: ad = ((ad + 5) * 10) - 5
>>> # NOT: ad = ad + (5 * 10) - 5

This is because the methods modify the object in-place, one operation after the other from left to right. This also
means that the original is modified.

This example applies the expected operator precedence:

>>> ad = ad + ad * 3 - 40.
>>> # means: ad = ad + (ad * 3) - 40.

If you need a copy, leaving the original untouched, which is sometimes useful you can use deepcopy or just use the
normal operator and assign to a new variable.:

>>> adnew = ad + ad * 3 - 40.

6.3 Variance

When doing arithmetic on an AstroData object, if a variance is present it will be propagated appropriately to the
output no matter which syntax you use (the methods or the Python operators).

6.3.1 Adding a Variance Plane

In this example, we will add the poisson noise to an AstroData dataset. The data is still in ADU, therefore the
poisson noise as variance is signal / gain. We want to set the variance for each of the pixel extensions.

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')

>>> for (extension, gain) in zip(ad, ad.gain()):
... extension.variance = extension.data / gain
...

Check ad.info(), you will see a variance plane for each of the four extensions.
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6.3.2 Automatic Variance Propagation

As mentioned before, if present, the variance plane will be propagated to the resulting AstroData object when doing
arithmetics. The variance calculation assumes that the data are not correlated.

Let’s look into an example.

# output = x * x
# var_output = var * x^2 + var * x^2
>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')

>>> ad[1].data[50,50]
56.160931
>>> ad[1].variance[50,50]
96.356529
>>> adout = ad * ad
>>> adout[1].data[50,50]
3154.05
>>> adout[1].variance[50,50]
607826.62

6.4 Data Quality Plane

The NDData mask stores the data quality plane. The simplest form is a True/False array of the same size at the pixel
array. In Astrodata we favor a bit array that allows for additional information about why the pixel is being masked.
For example at Gemini here is our bit mapping for bad pixels.

Meaning Value
Bad pixel 1
Non Linear 2
Saturated 4
Cosmic Ray 8
No Data 16
Overlap 32
Unilluminated 64

(These definitions are located in geminidr.gemini.lookups.DQ_definitions.)

So a pixel marked 10 in the mask, would be a “non-linear” “cosmic ray”. The AstroData mask are propagated with
bitwise-OR operation. For example, let say that we are stacking frames. A pixel is set as bad (value 1) in one frame,
saturated in another (value 4), and fine in all the other the frames (value 0). The mask of the resulting stack will be
assigned a value of 5 for that pixel.

These bitmasks will work like any other numpy True/False mask. There is a usage example below using the mask.

The mask can be accessed as follow:

>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
>>> ad.info()

>>> ad[2].mask
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6.5 Display

Since the data is stored in the AstroData object as a numpy ndarray any tool that works on ndarray can be
used. To display to DS9 there is the imexam package. The numdisplay package is still available for now but it is
no longer supported by STScI. We will show how to use imexam to display and read the cursor position. Read the
documentation on that tool to learn more about what else it has to offer.

6.5.1 Displaying with imexam

Here is an example how to display pixel data to DS9 with imexam.

>>> import imexam
>>> ad = astrodata.open('../playdata/N20170521S0925_forStack.fits')

# Connect to the DS9 window (should already be opened.)
>>> ds9 = imexam.connect(list(imexam.list_active_ds9())[0])

>>> ds9.view(ad[0].data)

# To scale "a la IRAF"
>>> ds9.view(ad[0].data)
>>> ds9.scale('zscale')

# To set the mininum and maximum scale values
>>> ds9.view(ad[0].data)
>>> ds9.scale('limits 0 2000')

6.5.2 Retrieving cursor position with imexam

The function readcursor() can be used to retrieve cursor position in pixel coordinates. Note that it will not
respond to mouse clicks, only keyboard entries are acknowledged.

When invoked, readcursor() will stop the flow of the program and wait for the user to put the cursor on top of
the image and type a key. A tuple with three values will be returned: the x and y coordinates in 0-based system, and
the value of the key the user hit.

>>> import imexam
>>> ad = astrodata.open('../playdata/N20170521S0925_forStack.fits')

# Connect to the DS9 window (should already be opened.)
# and display
>>> ds9 = imexam.connect(list(imexam.list_active_ds9())[0])
>>> ds9.view(ad[0].data)
>>> ds9.scale('zscale')

>>> cursor_coo = ds9.readcursor()
>>> print(cursor_coo)

# To extract only the x,y coordinates
>>> (xcoo, ycoo) = cursor_coo[:2]
>>> print(xcoo, ycoo)

# If you are also interested in the keystroke

(continues on next page)
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>>> keystroke = cursor_coo[2]
>>> print('You pressed this key: %s' % keystroke)

6.6 Useful tools from the NumPy, SciPy, and Astropy Packages

Like for the Display section, this section is not really specific to Astrodata but is rather a quick show-and-tell of a few
things that can be done on the pixels with the big scientific packages NumPy, SciPy, and Astropy.

Those three packages are very large and rich. They have their own extensive documentation and it is highly recommend
for the users to learn about what they have to offer. It might save you from re-inventing the wheel.

The pixels, the variance, and the mask are stored as NumPy ndarray’s. Let us go through some basic examples, just
to get a feel for how the data in an AstroData object can be manipulated.

6.6.1 ndarray

The data are contained in NumPy ndarray objects. Any tools that works on an ndarray can be used with Astrodata.

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')

>>> data = ad[0].data

>>> # Shape of the array. (equivalent to NAXIS2, NAXIS1)
>>> data.shape
(2112, 288)

>>> # Value of a pixel at "IRAF" or DS9 coordinates (100, 50)
>>> data[49,99]
455

>>> # Data type
>>> data.dtype
dtype('uint16')

The two most important thing to remember for users coming from the IRAF world or the Fortran world are that
the array has the y-axis in the first index, the x-axis in the second, and that the array indices are zero-indexed, not
one-indexed. The examples above illustrate those two critical differences.

It is sometimes useful to know the data type of the values stored in the array. Here, the file is a raw dataset, fresh off the
telescope. No operations has been done on the pixels yet. The data type of Gemini raw datasets is always “Unsigned
integer (0 to 65535)”, uint16.

Warning: Beware that doing arithmetic on uint16 can lead to unexpected results. This is a NumPy behavior.
If the result of an operation is higher than the range allowed by uint16, the output value will be “wrong”. The
data type will not be modified to accommodate the large value. A workaround, and a safety net, is to multiply the
array by 1.0 to force the conversion to a float64.

>>> a = np.array([65535], dtype='uint16')
>>> a + a
array([65534], dtype=uint16)
>>> 1.0*a + a
array([ 131070.])
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6.6.2 Simple Numpy Statistics

A lot of functions and methods are available in NumPy to probe the array, too many to cover here, but here are a couple
examples.

>>> import numpy as np

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> data = ad[0].data

>>> data.mean()
>>> np.average(data)
>>> np.median(data)

Note how mean() is called differently from the other two. mean() is a ndarray method, the others are numpy
functions. The implementation details are clearly well beyond the scope of this manual, but when looking for the
tool you need, keep in mind that there are two sets of functions to look into. Duplications like .mean() and np.
average() can happen, but they are not the norm. The readers are strongly encouraged to refer to the numpy
documentation to find the tool they need.

6.6.3 Clipped Statistics

It is common in astronomy to apply clipping to the statistics, a clipped average, for example. The NumPy ma module
can be used to create masks of the values to reject. In the examples below, we calculated the clipped average of the
first pixel extension with a rejection threshold set to +/- 3 times the standard deviation.

Before Astropy, it was possible to do something like that with only NumPy tools, like in this example:

>>> import numpy as np

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> data = ad[0].data

>>> stddev = data.std()
>>> mean = data.mean()

>>> clipped_mean = np.ma.masked_outside(data, mean-3*stddev, mean+3*stddev).mean()

There is no iteration in that example. It is a straight one-time clipping.

For something more robust, there is an Astropy function that can help, in particular by adding an iterative process to
the calculation. Here is how it is done:

>>> import numpy as np
>>> from astropy.stats import sigma_clip

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')
>>> data = ad[0].data

>>> clipped_mean = np.ma.mean(sigma_clip(data, sigma=3))

6.6.4 Filters with SciPy

Another common operation is the filtering of an image, for example convolving with a gaussian filter. The SciPy
module ndimage.filters offers several functions for image processing. See the SciPy documentation for more
information.
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The example below applies a gaussian filter to the pixel array.

>>> from scipy.ndimage import filters
>>> import imexam

>>> ad = astrodata.open('../playdata/N20170521S0925_forStack.fits')
>>> data = ad[0].data

>>> # We need to prepare an array of the same size and shape and
>>> # the data array. The result will be put in there.
>>> convolved_data = np.zeros(data.size).reshape(data.shape)

>>> # We now apply the convolution filter.
>>> sigma = 10.
>>> filters.gaussian_filter(data, sigma, output=convolved_data)

>>> # Let's visually compare the convolved image with the original
>>> ds9 = imexam.connect(list(imexam.list_active_ds9())[0])
>>> ds9.view(data)
>>> ds9.scale('zscale')
>>> ds9.frame(2)
>>> ds9.view(convolved_data)
>>> ds9.scale('zscale')
>>> ds9.blink()
>>> # when you are convinced it's been convolved, stop the blinking.
>>> ds9.blink(blink=False)

Note that there is an Astropy way to do this convolution, with tools in astropy.convolution package. Beware
that for this particular kernel we have found that the Astropy convolve function is extremely slow compared to
the SciPy solution. This is because the SciPy function is optimized for a Gaussian convolution while the generic
convolve function in Astropy can take in any kernel. Being able to take in any kernel is a very powerful feature, but
the cost is time. The lesson here is do your research, and find the best tool for your needs.

6.6.5 Many other tools

There many, many other tools available out there. Here are the links to the three big projects we have featured in this
section.

• NumPy: www.numpy.org

• SciPy: www.scipy.org

• Astropy: www.astropy.org

6.7 Using the Astrodata Data Quality Plane

Let us look at an example where the use of the Astrodata mask is necessary to get correct statistics. A GMOS imaging
frame has large sections of unilluminated pixels; the edges are not illuminated and there are two bands between the
three CCDs that represent the physical gap between the CCDs. Let us have a look at the pixels to have a better sense
of the data:

>>> ad = astrodata.open('../playdata/N20170521S0925_forStack.fits')
>>> import imexam
>>> ds9 = imexam.connect(list(imexam.list_active_ds9())[0])

(continues on next page)
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>>> ds9.view(ad[0].data)
>>> ds9.scale('zscale')

See how the right and left portions of the frame are not exposed to the sky, and the 45 degree angle cuts of the four
corners. The chip gaps too. If we wanted to do statistics on the whole frames, we certainly would not want to include
those unilluminated areas. We would want to mask them out.

Let us have a look at the mask associated with that image:

>>> ds9.view(ad[0].mask)
>>> ds9.scale('zscale')

The bad sections are all white (pixel value > 0). There are even some illuminated pixels that have been marked as bad
for a reason or another.

Let us use that mask to reject the pixels with no or bad information and do calculations only on the good pixels. For
the sake of simplicity we will just do an average. This is just illustrative. We show various ways to accomplish the
task; choose the one that best suits your need or that you find most readable.

>>> import numpy as np

>>> # For clarity...
>>> data = ad[0].data
>>> mask = ad[0].mask

>>> # Reject all flagged pixels and calculate the mean
>>> np.mean(data[mask == 0])
>>> np.ma.masked_array(data, mask).mean()

>>> # Reject only the pixels flagged "no_data" (bit 16)
>>> np.mean(data[(mask & 16) == 0])
>>> np.ma.masked_array(data, mask & 16).mean()
>>> np.ma.masked_where(mask & 16, data).mean()

The “long” form with np.ma.masked_* is useful if you are planning to do more than one operation on the masked
array. For example:

>>> clean_data = np.ma.masked_array(data, mask)
>>> clean_data.mean()
>>> np.ma.median(clean_data)
>>> clean_data.max()

6.8 Manipulate Data Sections

So far we have shown examples using the entire data array. It is possible to work on sections of that array. If you
are already familiar with Python, you probably already know how to do most if not all of what is in this section. For
readers new to Python, and especially those coming from IRAF, there are a few things that are worth explaining.

When indexing a NumPy ndarray, the left most number refers to the highest dimension’s axis. For example, in a
2D array, the IRAF section are in (x-axis, y-axis) format, while in Python they are in (y-axis, x-axis) format. Also
important to remember is that the ndarray is 0-indexed, rather than 1-indexed like in Fortran or IRAF.

Putting it all together, a pixel position (x,y) = (50,75) in IRAF or from the cursor on a DS9 frame, is accessed in Python
as data[74,49]. Similarly, the IRAF section [10:20, 30:40] translate in Python to [9:20, 29:40]. Also remember
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that when slicing in Python, the upper limit of the slice is not included in the slice. This is why here we request 20 and
40 rather 19 and 39.

Let’s put it in action.

6.8.1 Basic Statistics on Section

In this example, we do simple statistics on a section of the image.

>>> import numpy as np

>>> ad = astrodata.open('../playdata/N20170521S0925_forStack.fits')
>>> data = ad[0].data

>>> # Get statistics for a 25x25 pixel-wide box centered on pixel
>>> # (50,75) (DS9 frame coordinate)
>>> xc = 49
>>> yc = 74
>>> buffer = 25
>>> (xlow, xhigh) = (xc - buffer//2, xc + buffer//2 + 1)
>>> (ylow, yhigh) = (yc - buffer//2, yc + buffer//2 + 1)
>>> # The section is [62:87, 37:62]
>>> stamp = data[ylow:yhigh, xlow:xhigh]
>>> mean = stamp.mean()
>>> median = np.median(stamp)
>>> stddev = stamp.std()
>>> minimum = stamp.min()
>>> maximum = stamp.max()

>>> print(' Mean Median Stddev Min Max\n \
... %.2f %.2f %.2f %.2f %.2f' % \
... (mean, median, stddev, minimum, maximum))

Have you noticed that the median is calculated with a function rather than a method? This is simply because the
ndarray object does not have a method to calculate the median.

6.8.2 Example - Overscan Subtraction with Trimming

Several concepts from previous sections and chapters are used in this example. The Descriptors are used to retrieve
the overscan section and the data section information from the headers. Statistics are done on the NumPy ndarray
representing the pixel data. Astrodata arithmetics is used to subtract the overscan level. Finally, the overscan section
is trimmed off and the modified AstroData object is written to a new file on disk.

To make the example more complete, and to show that when the pixel data array is trimmed, the variance (and mask)
arrays are also trimmed, let us add a variance plane to our raw data frame.

>>> ad = astrodata.open('../playdata/N20170609S0154.fits')

>>> for (extension, gain) in zip(ad, ad.gain()):
... extension.variance = extension.data / gain
...

>>> # Here is how the data structure looks like before the trimming.
>>> ad.info()
Filename: ../playdata/N20170609S0154.fits
Tags: ACQUISITION GEMINI GMOS IMAGE NORTH RAW SIDEREAL UNPREPARED

(continues on next page)
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Pixels Extensions
Index Content Type Dimensions Format
[ 0] science NDAstroData (2112, 288) uint16

.variance ndarray (2112, 288) float64
[ 1] science NDAstroData (2112, 288) uint16

.variance ndarray (2112, 288) float64
[ 2] science NDAstroData (2112, 288) uint16

.variance ndarray (2112, 288) float64
[ 3] science NDAstroData (2112, 288) uint16

.variance ndarray (2112, 288) float64

>>> # Let's operate on the first extension.
>>>
>>> # The section descriptors return the section in a Python format
>>> # ready to use, 0-indexed.
>>> oversec = ad[0].overscan_section()
>>> datasec = ad[0].data_section()

>>> # Measure the overscan level
>>> mean_overscan = ad[0].data[oversec.y1: oversec.y2, oversec.x1: oversec.x2].mean()

>>> # Subtract the overscan level. The variance will be propagated.
>>> ad[0].subtract(mean_overscan)

>>> # Trim the data to remove the overscan section and keep only
>>> # the data section.
>>> #
>>> # Here we work on the NDAstroData object to have the variance
>>> # trimmed automatically to the same size as the science array.
>>> # To reassign the cropped NDAstroData, we use the reset() method.
>>> ad[0].reset(ad[0].nddata[datasec.y1:datasec.y2, datasec.x1:datasec.x2])

>>> # Now look at the dimensions of the first extension, science
>>> # and variance. That extension is smaller than the others.
>>> ad.info()
Filename: ../playdata/N20170609S0154.fits
Tags: ACQUISITION GEMINI GMOS IMAGE NORTH RAW SIDEREAL UNPREPARED

Pixels Extensions
Index Content Type Dimensions Format
[ 0] science NDAstroData (2112, 256) float64

.variance ndarray (2112, 256) float64
[ 1] science NDAstroData (2112, 288) uint16

.variance ndarray (2112, 288) float64
[ 2] science NDAstroData (2112, 288) uint16

.variance ndarray (2112, 288) float64
[ 3] science NDAstroData (2112, 288) uint16

.variance ndarray (2112, 288) float64

>>> # We can write this to a new file
>>> ad.write('partly_overscan_corrected.fits')

A new feature presented in this example is the ability to work on the NDAstroData object directly. This is particu-
larly useful when cropping the science pixel array as one will want the variance and the mask arrays cropped exactly
the same way. Taking a section of the NDAstroData object (ad[0].nddata[y1:y2, x1:x2]), instead of just the .data
array, does all that for us.
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To reassign the cropped NDAstroData to the extension one uses the .reset() method as shown in the example.

Of course to do the overscan correction correctly and completely, one would loop over all four extensions. But that’s
the only difference.

6.9 Data Cubes

Reduced Integral Field Unit (IFU) data is commonly represented as a cube, a three-dimensional array. The data
component of an AstroData object extension can be such a cube, and it can be manipulated and explored with
NumPy, AstroPy, SciPy, imexam, like we did already in this section with 2D arrays. We can use matplotlib to plot the
1D spectra represented in the third dimension.

In Gemini IFU cubes, the first axis is the X-axis, the second, the Y-axis, and the wavelength is in the third axis.
Remember that in a ndarray that order is reversed (wlen, y, x).

In the example below we “collapse” the cube along the wavelenth axis to create a “white light” image and display it.
Then we plot a 1D spectrum from a given (x,y) position.

>>> import imexam
>>> import matplotlib.pyplot as plt

>>> ds9 = imexam.connect(list(imexam.list_active_ds9())[0])

>>> adcube = astrodata.open('../playdata/gmosifu_cube.fits')
>>> adcube.info()

>>> # Sum along the wavelength axis to create a "white light" image
>>> summed_image = adcube[0].data.sum(axis=0)
>>> ds9.view(summed_image)
>>> ds9.scale('minmax')

>>> # Plot a 1-D spectrum from the spatial position (14,25).
>>> plt.plot(adcube[0].data[:,24,13])
>>> plt.show() # might be needed, depends on matplotlibrc interactive setting

Now that is nice but it would be nicer if we could plot the x-axis in units of Angstroms instead of pixels. We use
astropy.wcs to convert the pixels into wavelengths. Now a particularity of astropy.wcs is that it refers to the
axes in the “natural” way, (x, y, wlen) contrary to Python’s (wlen, y, x). It truly requires you to pay attention.

>>> import numpy as np
>>> from astropy import wcs
>>> import matplotlib.pyplot as plt

>>> adcube = astrodata.open('../playdata/gmosifu_cube.fits')

>>> # First get the World Coordinate System from the header
>>> cube_wcs = wcs.WCS(adcube[0].hdr)

>>> # Then get an array of the coordinates for that spectrum in
>>> # pixel coordinates, at position (14,25)
>>> length_wlen_axis = adcube[0].data.shape[0]
>>> spectrum_pix_coord = np.array([ [13,24,i] for i in range(length_wlen_axis) ])

>>> # Transform pixel coordinates in to Angstroms and keep only
>>> # the wavelength axis.
>>> wavelengths = cube_wcs.wcs_pix2world(spectrum_pix_coord, 0)[:,2]

(continues on next page)
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>>> # Finally plot the spectrum at position (7,30)
>>> plt.clf() # just to clear the plot
>>> plt.plot(wavelengths, adcube[0].data[:,24,13])
>>> plt.show()

6.10 Plot Data

The main plotting package in Python is matplotlib. We have used it in the previous section on data cubes to
plot a spectrum. There is also relatively new project called imexam which provides astronomy-specific tools for the
exploration and measurement of data. We have also used that package above to display images to DS9.

In this section we absolutely do not aim at covering all the features of either package but rather to give a few examples
that can get the readers started in their exploration of the data and of the visualization packages.

Refer to the projects web pages for full documentation.

• Matplotlib: https://matplotlib.org

• imexam: https://github.com/spacetelescope/imexam

6.10.1 Matplotlib

With Matplotlib you have full control on your plot. You do have to do a bit for work to get it perfect though. However
it can produce publication quality plots. Here we just scratch the surface of Matplotlib.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from astropy import wcs

>>> ad_image = astrodata.open('../playdata/N20170521S0925_forStack.fits')
>>> ad_spectrum = astrodata.open('../playdata/estgsS20080220S0078.fits')

>>> # Line plot from image. Row #1044 (y-coordinate)
>>> line_index = 1043
>>> line = ad_image[0].data[line_index, :]
>>> plt.clf()
>>> plt.plot(line)
>>> plt.show()

>>> # Column plot from image, averaging across 11 pixels around colum #327
>>> col_index = 326
>>> width = 5
>>> xlow = col_index - width
>>> xhigh = col_index + width + 1
>>> thick_column = ad_image[0].data[:, xlow:xhigh]
>>> plt.clf()
>>> plt.plot(thick_column.mean(axis=1)) # mean along the width.
>>> plt.show()
>>> plt.ylim(0, 50) # Set the y-axis range
>>> plt.plot(thick_column.mean(axis=1))
>>> plt.show()

>>> # Contour plot for a section of an image.

(continues on next page)
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>>> center = (1646, 2355)
>>> width = 15
>>> xrange = (center[1]-width//2, center[1] + width//2 + 1)
>>> yrange = (center[0]-width//2, center[0] + width//2 + 1)
>>> blob = ad_image[0].data[yrange[0]:yrange[1], xrange[0]:xrange[1]]
>>> plt.clf()
>>> plt.imshow(blob, cmap='gray', origin='lower')
>>> plt.contour(blob)
>>> plt.show()

>>> # Spectrum in pixels
>>> plt.clf()
>>> plt.plot(ad_spectrum[0].data)
>>> plt.show()

>>> # Spectrum in Angstroms
>>> spec_wcs = wcs.WCS(ad_spectrum[0].hdr)
>>> pixcoords = np.array(range(ad_spectrum[0].data.shape[0]))
>>> wlen = spec_wcs.wcs_pix2world(pixcoords, 0)[0]
>>> plt.clf()
>>> plt.plot(wlen, ad_spectrum[0].data)
>>> plt.show()

6.10.2 imexam

For those who have used IRAF, imexam is a well-known tool. The Python imexam reproduces many of its IRAF
predecesor, the interactive mode of course, but it also offers programmatic tools. One can even control DS9 from
Python. As for Matplotlib, here we really just scratch the surface of what imexam has to offer.

>>> import imexam
>>> from imexam.imexamine import Imexamine

>>> ad_image = astrodata.open('../playdata/N20170521S0925_forStack.fits')

# Display the image
>>> ds9 = imexam.connect(list(imexam.list_active_ds9())[0])
>>> ds9.view(ad_image[0].data)
>>> ds9.scale('zscale')

# Run in interactive mode. Try the various commands.
>>> ds9.imexam()

# Use the programmatic interface
# First initialize an Imexamine object.
>>> plot = Imexamine()

# Line plot from image. Row #1044 (y-coordinate)
>>> line_index = 1043
>>> plot.plot_line(0, line_index, ad_image[0].data)

# Column plot from image, averaging across 11 pixels around colum #327
# There is no setting for this, so we have to do something similar
# to what we did with matplotlib.
>>> col_index = 326
>>> width = 5

(continues on next page)
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>>> xlow = col_index - width
>>> xhigh = col_index + width + 1
>>> thick_column = ad_image[0].data[:, xlow:xhigh]
>>> mean_column = thick_column.mean(axis=1)
>>> plot.plot_column(0, 0, np.expand_dims(mean_column, 1))

>>> # Contour plot for a section of an image.
>>> center = (1646, 2355) # in python coordinates
>>> width = 15
>>> plot.contour_pars['ncolumns'][0] = width
>>> plot.contour_pars['nlines'][0] = width
>>> plot.contour(center[1], center[0], ad_image[0].data)
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CHAPTER 7

Table Data

Try it yourself

Download the data package (Try it yourself ) if you wish to follow along and run the examples. Then

$ cd <path>/ad_usermanual/playground
$ python

Then import core astrodata and the Gemini astrodata configurations.

>>> import astrodata
>>> import gemini_instruments

7.1 Tables and Astrodata

Tables are stored as astropy.table Table class. FITS tables too are represented in Astrodata as Table and
FITS headers are stored in the NDAstroData .meta attribute. Most table access should be done through the Table
interface. The best reference on Table is the Astropy documentation itself. In this chapter we covers some common
examples to get the reader started.

The astropy.table documentation can be found at: http://docs.astropy.org/en/stable/table/index.html

7.2 Operate on a Table

Let us open a file with tables. Some tables are associated with specific extensions, and there is one table that is global
to the AstroData object.

>>> ad = astrodata.open('../playdata/N20170609S0154_varAdded.fits')
>>> ad.info()

To access the global table named REFCAT:
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>>> ad.REFCAT

To access the OBJCAT table in the first extension

>>> ad[0].OBJCAT

7.2.1 Column and Row Operations

Columns are named. Those names are used to access the data as columns. Rows are not names and are simply
represented as a sequential list.

Read columns and rows

To get the names of the columns present in the table:

>>> ad.REFCAT.colnames
['Id', 'Cat_Id', 'RAJ2000', 'DEJ2000', 'umag', 'umag_err', 'gmag',
'gmag_err', 'rmag', 'rmag_err', 'imag', 'imag_err', 'zmag', 'zmag_err',
'filtermag', 'filtermag_err']

Then it is easy to request the values for specific columns:

>>> ad.REFCAT['zmag']
>>> ad.REFCAT['zmag', 'zmag_err']

To get the content of a specific row, row 10 in this case:

>>> ad.REFCAT[9]

To get the content of a specific row(s) from a specific column(s):

>>> ad.REFCAT['zmag'][4]
>>> ad.REFCAT['zmag'][4:10]
>>> ad.REFCAT['zmag', 'zmag_err'][4:10]

Change values

Assigning new values works in a similar way. When working on multiple elements it is important to feed a list that
matches in size with the number of elements to replace.

>>> ad.REFCAT['imag'][4] = 20.999
>>> ad.REFCAT['imag'][4:10] = [5, 6, 7, 8, 9, 10]

>>> overwrite_col = [0] * len(ad.REFCAT) # a list of zeros, size = nb of rows
>>> ad.REFCAT['imag_err'] = overwrite_col

Add a row

To append a row, there is the add_row() method. The length of the row should match the number of columns:

>>> new_row = [0] * len(ad.REFCAT.colnames)
>>> ad.REFCAT.add_row(new_row)
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Add a column

Adding a new column can be more involved. If you need full control, please see the AstroPy Table documentation.
For a quick addition, which might be sufficient for your use case, we simply use the “dictionary” technique. Please
note that when adding a column, it is important to ensure that all the elements are of the same type. Also, if you are
planning to use that table in IRAF/PyRAF, we recommend not using 64-bit types.

>>> import numpy as np

>>> new_column = [0] * len(ad.REFCAT)
>>> # Ensure that the type is int32, otherwise it will default to int64
>>> # which IRAF 32-bit does not like.
>>> new_column = np.array(new_column).astype(np.int32)
>>> ad.REFCAT['my_column'] = new_column

If you are going to write that table back to disk as a FITS Bintable, then some additional headers need to be set.
Astrodata will take care of that under the hood when the write method is invoked.

>>> ad.write('myfile_with_modified_table.fits')

7.2.2 Selection and Rejection Operations

Normally, one does not know exactly where the information needed is located in a table. Rather some sort of selection
needs to be done. This can also be combined with various calculations. We show two such examples here.

Select a table element from criterion

>>> # Get the magnitude of a star selected by ID number
>>> ad.REFCAT['zmag'][ad.REFCAT['Cat_Id'] == '1237662500002005475']

>>> # Get the ID and magnitude of all the stars brighter than zmag 18.
>>> ad.REFCAT['Cat_Id', 'zmag'][ad.REFCAT['zmag'] < 18.]

Rejection and selection before statistics

>>> t = ad.REFCAT # to save typing

>>> # The table has "NaN" values. ("Not a number") We need to ignore them.
>>> t['zmag'].mean()
nan
>>> # applying rejection of NaN values:
>>> t['zmag'][np.where(~np.isnan(t['zmag']))].mean()
20.377306

7.2.3 Accessing FITS table headers directly

If for some reason you need to access the FITS table headers directly, here is how to do it. It is very unlikely that you
will need this.

To see the FITS headers:
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>>> ad.REFCAT.meta['header']
>>> ad[0].OBJCAT.meta['header']

To retrieve a specific FITS table header:

>>> ad.REFCAT.meta['header']['TTYPE3']
'RAJ2000'
>>> ad[0].OBJCAT.meta['header']['TTYPE3']
'Y_IMAGE'

To retrieve all the keyword names matching a selection:

>>> keynames = [key for key in ad.REFCAT.meta['header'] if key.startswith('TTYPE')]

7.3 Create a Table

To create a table that can be added to an AstroData object and eventually written to disk as a FITS file, the first step
is to create an Astropy Table.

Let us first add our data to NumPy arrays, one array per column:

>>> import numpy as np

>>> snr_id = np.array(['S001', 'S002', 'S003'])
>>> feii = np.array([780., 78., 179.])
>>> pabeta = np.array([740., 307., 220.])
>>> ratio = pabeta / feii

Then build the table from that data:

>>> from astropy.table import Table

>>> my_astropy_table = Table([snr_id, feii, pabeta, ratio],
... names=('SNR_ID', 'FeII', 'PaBeta', 'ratio'))

Now we append this Astropy Table to a new AstroData object.

>>> # Since we are going to write a FITS, we build the AstroData object
>>> # from FITS objects.
>>> from astropy.io import fits

>>> phu = fits.PrimaryHDU()
>>> ad = astrodata.create(phu)
>>> ad.append(my_astropy_table, name='MYTABLE')
>>> ad.info()
>>> ad.MYTABLE

>>> ad.write('new_table.fits')
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APPENDIX A

List of Gemini Standard Descriptors

To run and re-use Gemini primitives and functions this list of Standard Descriptors must be defined for input data.
This also applies to data that is to be served by the Gemini Observatory Archive (GOA).

For any AstroData objects, to get the list of the descriptors that are defined use the astrodata.
descriptor_list() function:

>>> import astrodata
>>> import gemini_instruments
>>> ad = astrodata.open('../playdata/N20170609S0154.fits')

>>> astrodata.descriptor_list(ad)

To get the values:

>>> ad.airmass()

>>> for descriptor in astrodata.descriptor_list(ad):
... print(descriptor, getattr(ad, descriptor)())
...

Note that not all of the descriptors below are defined for all of the instruments. For example, shuffle_pixels is
defined only for GMOS data since only GMOS offers a Nod & Shuffle mode.

Descriptor Short Definition Python type
ad[0].desc()
ad.desc()

airmass Airmass of the observation. float
amp_read_area Combination of amplifier name and 1-indexed section

relative to the detector.
str
list of str

ao_seeing Estimate of the natural seeing as calculated from the
adaptive optics systems.

float

array_name Name assigned to the array generated by a given am-
plifier, one array per amplifier.

str
Continued on next page
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Table 1 – continued from previous page
Descriptor Short Definition Python type

ad[0].desc()
ad.desc()
list of str

array_section Section covered by the array(s), in 0-indexed pixels,
relative to the detector frame (e.g. position of multiple
amps read within a CCD). Uses namedtuple “Sec-
tion” defined in gemini_instruments.common.

Section

list of Section

azimuth Pointing position in azimuth, in degrees. float
calibration_key Key used in the database that the getProcessed*

primitives use to store previous calibration association
information.

str

camera Name of the camera. str
cass_rotator_pa Position angle of the Cassegrain rotator, in degrees. float
central_wavelength Central wavelength, in meters. float
coadds Number of co-adds. int
data_label Gemini data label. str
data_section Section where the sky-exposed data falls, in 0-indexed

pixels. Uses namedtuple “Section” defined in
gemini_instruments.common

Section

list of Section
dec Declination of the center of the field, in degrees. float
decker Name of the decker. str
detector_name Name assigned to the detector. str
detector_roi_setting Human readable Region of Interest (ROI) setting str
detector_rois_requested Section defining the Regions of Interest, in 0-indexed

pixels. Uses namedtuple “Section” defined in
gemini_instruments.common.

list of Section

detector_section Section covered by the detector(s), in 0-indexed
pixels, relative to the whole mosaic of detec-
tors. Uses namedtuple “Section” defined in
gemini_instruments.common.

list

list of Section

detector_x_bin X-axis binning. int
detector_x_offset Telescope offset along the detector X-axis, in pixels. float
detector_y_bin Y-axis binning. int
detector_y_offset Telescope offset along the detector Y-axis, in pixels. float
disperser Name of the disperser. str
dispersion Value for the dispersion, in meters per pixel. float

list of float
dispersion_axis Dispersion axis. int

list of int
effective_wavelength Wavelength representing the bandpass or the spectrum

coverage.
float

elevation Pointing position in elevation, in degrees. float
exposure_time Exposure time, in seconds. float
filter_name Name of the filter combination. str
focal_plane_mask Name of the mask in the focal plane. str
gain Gain in electrons per ADU float

list of float
gain_setting Human readable gain setting (eg. low, high) str
gcal_lamp Returns the name of the GCAL lamp being used, or

“Off” if no lamp is in used.
str

Continued on next page
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Table 1 – continued from previous page
Descriptor Short Definition Python type

ad[0].desc()
ad.desc()

group_id Gemini observation group ID that identifies compati-
ble data.

str

instrument Name of the instrument str
is_ao Whether or not the adaptive optics system was used. bool
is_coadds_summed Whether co-adds are summed or averaged. bool
local_time Local time. datetime
lyot_stop Name of the lyot stop. str
mdf_row_id Mask Definition File row ID of a cut MOS or XD spec-

trum.
int ??

nod_count Number of nods to A and B positions. tuple of int
nod_offsets Nod offsets to A and B positions, in arcseconds tuple of float
nominal_atmospheric_extinction Nomimal atmospheric extinction, from model. float
nominal_photometric_zeropoint Nominal photometric zeropoint. float

list of float
non_linear_level Lower boundary of the non-linear regime. float

list of int
object Name of the target (as entered by the user). str
observation_class Gemini class name for the observation (eg. ‘science’,

‘acq’, ‘dayCal’).
str

observation_epoch Observation epoch. float
observation_id Gemini observation ID. str
observation_type Gemini observation type (eg. ‘OBJECT’, ‘FLAT’,

‘ARC’).
str

overscan_section Section where the overscan data falls, in 0-indexed
pixels. Uses namedtuple “Section” defined in
gemini_instruments.common.

Section

list of Section
pixel_scale Pixel scale in arcsec per pixel. float
program_id Gemini program ID. str
pupil_mask Name of the pupil mask. str ??
qa_state Gemini quality assessment state (eg. pass, usable,

fail).
str

ra Right ascension, in degrees. float
raw_bg Gemini sky background band. int ??
raw_cc Gemini cloud coverage band. int
raw_iq Gemini image quality band. int
raw_wv Gemini water vapor band. int ??
read_mode Gemini name for combination for gain setting and read

setting.
str

read_noise Read noise in electrons. float
list of float

read_speed_setting human readable read mode setting (eg. slow, fast). str
requested_bg PI requested Gemini sky background band. int
requested_cc PI requested Gemini cloud coverage band. int
requested_iq PI requested Gemini image quality band. int
requested_wv PI requested Gemini water vapor band. int
saturation_level Saturation level. int

list of int
shuffle_pixels Charge shuffle, in pixels. (nod and shuffle mode) int

Continued on next page
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Table 1 – continued from previous page
Descriptor Short Definition Python type

ad[0].desc()
ad.desc()

slit Name of the slit. str
target_dec Declination of the target, in degrees. float
target_ra Right Ascension of the target, in degrees. float
telescope Name of the telescope. str
telescope_x_offset Offset along the telescope’s x-axis. float
telescope_y_offset Offset along the telescope’s y-axis. float
ut_date UT date of the observation. datetime.date
ut_datetime UT date and time of the observation. datetime
ut_time UT time of the observation. datetime.time
wavefront_sensor Wavefront sensor used for the observation. str
wavelength_band Band associated with the filter or the central wave-

length.
str

wcs_dec Declination of the center of field from the WCS key-
words. In degrees.

float

wcs_ra Right Ascension of the center of field from the WCS
keywords. In degrees.

float

well_depth_setting Human readable well depth setting (eg. shallow, deep) str
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