
Astrodata Programmer Manual
Release 3.0.1

Ricardo Cardenes

December 2021

Contents

1 Precedents and Motivation 2

2 General Design 3

3 AstroData and Derivatives 5

4 Data Providers 11

5 Data Containers 14

6 Tags 16

7 Descriptors 19

Appendices

A API Reference Guide 21

Index 33

i

Astrodata Programmer Manual, Release 3.0.1

Document ID

PIPE-USER-104_AstrodataProgManual

Contents 1

CHAPTER 1

Precedents and Motivation

The Gemini Observatory has produced a number of tools for data processing. Historically this has translated into a
number of IRAF1 packages but the lack of long-term support for IRAF, coupled with the well-known difficulty in
creating robust reduction pipelines within the IRAF environment, led to a decision to adopt Python as a programming
tool and a new package was born: Gemini Python. Gemini Python provided tools to load and manipulate Gemini-
produced multi-extension FITS2 (MEF) files, along with a pipeline that allowed the construction of reduction recipes.
At the center of this package was the AstroData subpackage, which supported the abstraction of the FITS files.

Gemini Python reached version 1.0.1, released during November 2014. In 2015 the Science User Support Department
(SUSD) was created at Gemini, which took on the responsibility of maintaining the software reduction tools, and
started planning future steps. With improved oversight and time and thought, it became evident that the design of
Gemini Python and, specially, of AstroData, made further development a daunting task.

In 2016 a decision was reached to overhaul Gemini Python. While the principles behind AstroData were sound, the
coding involved unnecessary layers of abstraction and eschewed features of the Python language in favor of its own
implementation. Thus, DRAGONS3 was born, with a new, simplified (and backward incompatible) AstroData v2.0
(which we will refer to simply as AstroData)

This manual documents both the high level design and some implementation details of AstroData, together with an
explanation of how to extend the package to work for new environments.

1 http://iraf.net
2 The Flexible Image Transport System
3 The Data Reduction for Astronomy from Gemini Observatory North and South package

2

http://iraf.net
https://fits.gsfc.nasa.gov/fits_standard.html
https://github.com/GeminiDRSoftware/DRAGONS

CHAPTER 2

General Design

As astronomical instruments have become more complex, there has been an increasing need for bespoke reduction
packages and pipelines to deal with the specific needs of each instrument. Despite this complexity, many of the re-
duction steps can be very similar and the overall effort could be reduced significantly by sharing code. In practice,
however, there are often issues regarding the manner in which the data are stored internally. The purpose of AstroData
is to provide a uniform interface to the data and metadata, in a manner that is independent both of the specific instru-
ment and the way the data are stored on disk, thereby facilitating this code-sharing. It is not a new astronomical data
format.

One of the main features of AstroData is the use of descriptors, which provide a level of abstraction between the
metadata and the code accessing it. Somebody using the AstroData interface who wishes to know the exposure
time of a particular astronomical observation represented by the AstroData object ad can simply write ad.
exposure_time() without needing to concern themselves about how that value is stored internally, for example,
the name of the FITS header keyword. These are discussed further in Descriptors.

AstroData also provides a clearer representation of the relationships between different parts of the data produced from
a single astronomical observation. Modern astronomical instruments often contain multiple detectors that are read
out separately and the multi-extension FITS (MEF) format used by many institutions, including Gemini Observatory,
handles the raw data well. In this format, each detector’s data and metadata is assigned to its own extension, while
there is also a separate extension (the Primary Header Unit, or PHU) containing additional metadata that applies to the
entire observation. However, as the data are processed, more data and/or metadata may be added whose relationship is
obscured by the limitations of the MEF format. One example is the creation and propagation of information describing
the quality and uncertainty of the scientific data: while this was a feature of Gemini IRAF1, the coding required to
implement it was cumbersome and AstroData uses the astropy.nddata.NDData class, as discussed in Data
Containers. This makes the relationship between these data much clearer, and AstroData creates a syntax that makes
readily apparent the roles of other data and metadata that may be created during the reduction process.

An AstroData object therefore consists of one or more self-contained “extensions” (data and metadata) plus addi-
tional data and metadata that is relevant to all the extensions. In many data reduction processes, the same operation
will be performed on each extension (e.g., subtracting an overscan region from a CCD frame) and an axiom of Astro-
Data is that iterating over the extensions produces AstroData “slices” which retain knowledge of the top-level data and
metadata. Since a slice has one (or more) extensions plus this top-level (meta)data, it too is an AstroData object
and, specifically, an instance of the same subclass as its parent.

1 https://www.gemini.edu/observing/phase-iii

3

https://www.gemini.edu/observing/phase-iii

Astrodata Programmer Manual, Release 3.0.1

A final feature of AstroData is the implementation of very high-level metadata. These data, called tags, facilitate a
key part of the Gemini data reduction system, DRAGONS, by linking the astronomical data to the recipes required to
process them. They are explained in detail in Tags and the Recipe System Programmers Manual2.

Note: AstroData and DRAGONS have been developed for the reduction of data from Gemini Observatory, which
produces data in the FITS format that is still the most widely-used format for astronomical data. In light of this, and
the limited resources in the Science User Support Department, we have only developed support for FITS, even though
the AstroData format is designed to be independent of the file format. In some cases, this has led to uncertainty and
internal disagreement over where precisely to engage in abstraction and, should AstroData support a different file
format, we may find alternative solutions that result in small, but possibly significant, changes to the API.

2

4

CHAPTER 3

AstroData and Derivatives

The astrodata.core.AstroData class (or simply astrodata.AstroData) is the main interface to the
package. When opening files or creating new objects, a derivative of this class is returned, as the AstroData class
is not intended to be used directly. It provides the logic to calculate the tag set for an image, which is common to all
data products. Aside from that, it lacks any kind of specialized knowledge about the different instruments that produce
the FITS files. More importantly, it defines two methods (info and load) as abstract, meaning that the class cannot
be instantiated directly: a derivative must implement those methods in order to be useful. Such derivatives can also
implement descriptors, which provide processed metadata in a way that abstracts the user from the raw information
(e.g., the keywords in FITS headers).

AstroData does define a common interface, though. Much of it consists on implementing semantic behavior (access
to components through indices, like a list; arithmetic using standard operators; etc), mostly by implementing standard
Python methods:

• Defines a common __init__ function, that accepts a DataProvider as its single argument.

• Implements __deepcopy__

• Implements __iter__ to allow sequential iteration over the main set of components (e.g., FITS science HDUs,
but this depends on the DataProvider implementation)

• Implements __getitem__ to allow data slicing (e.g., ad[2:4] returns a new AstroData instance that
contains only the third and fourth main components)

• Implements __delitem__ to allow for data removal based on index. It does not define __setitem__,
though. The basic AstroData series of classes only allows to append new data blocks, not to replace them in one
sweeping move

• Implements __iadd__, __isub__, __imul__, __itruediv__, and their not-in-place versions, based on
them.

All of these provide default implementations that rely heavily on the DataProvider capabilities. There are a few
other methods. For a detailed discussion, please refer to the API Reference Guide.

5

Astrodata Programmer Manual, Release 3.0.1

3.1 The tags Property

Additionally, and crucial to the package, AstroData offers a tags property, that under the hood calculates textual tags
that describe the object represented by an instance, and returns a set of strings. Returning a set (as opposed to a list,
or other similar structure) is intentional, because it is fast to compare sets, e.g., testing for membership; or calculating
intersection, etc., to figure out if a certain dataset belongs to an arbitrary category.

The implementation for the tags property is just a call to AstroData.__process_tags(). This function imple-
ments the actual logic behind calculating the tag set (described below). A derivative class could redefine the algorithm,
or build upon it.

3.2 Writing an AstroData Derivative

The first step when creating new AstroData derivative hierarchy would be to create a new class that knows how to
deal with some kind of specific data in a broad sense. DRAGONS provide such a class for FITS files, astrodata.
fits.AstroDataFits, that can be used as an example for future extensions (e.g., to support the ASDF format).

AstroDataFits implements both info and load in ways that are specific to FITS files. It also introduces a number
of FITS-specific methods and properties, e.g.:

• The properties phu and hdr, which return the primary header and a list of headers for the science HDUs,
respectively.

• A write method, which will write the data back to a FITS file

• A _matches_data static method, which is very important, involved in guiding for the automatic class choice
algorithm during data loading. We’ll talk more about this when dealing with registering our classes.

It also defines the first few descriptors, which are common to all Gemini data: instrument, object, and
telescope, which are good examples of simple descriptors that just map a PHU keyword without applying any
conversion.

A typical AstroData programmer will extend this class (AstroDataFits), unless introducing support for a different
kind of data storage. Any of the classes under the gemini_instruments package can be used as examples, but
we’ll describe the important bits here.

3.2.1 Create a package for it

This is not strictly necessary, but simplifies many things, as we’ll see when talking about registration. The pack-
age layout is up to the designer, so you can decide how to do it. For DRAGONS we’ve settled on the following
recommendation for our internal process (just to keep things familiar):

gemini_instruments
__init__.py
instrument_name

__init__.py
adclass.py
lookup.py

Where instrument_name would be the package name (for Gemini we group all our derivative packages under
gemini_instruments, and we would import gemini_instruments.gmos, for example). __init__.py
and adclass.py would be the only required modules under our recommended layout, with lookup.py being
there just to hold hard-coded values in a module separate from the main logic.

adclass.pywould contain the declaration of the derivative class, and __init__.pywill contain any code needed
to register our class with the AstroData system upon import.

3.1. The tags Property 6

Astrodata Programmer Manual, Release 3.0.1

3.2.2 Create your derivative class

This is an excerpt of a typical derivative module:

from astrodata import astro_data_tag, astro_data_descriptor, TagSet
from astrodata import AstroDataFits

from . import lookup

class AstroDataInstrument(AstroDataFits):
__keyword_dict = dict(

array_name = 'AMPNAME',
array_section = 'CCDSECT'

)

@staticmethod
def _matches_data(source):

return source[0].header.get('INSTRUME', '').upper() == 'MYINSTRUMENT'

@astro_data_tag
def _tag_instrument(self):

return TagSet(['MYINSTRUMENT'])

@astro_data_tag
def _tag_image(self):

if self.phu.get('GRATING') == 'MIRROR':
return TagSet(['IMAGE'])

@astro_data_tag
def _tag_dark(self):

if self.phu.get('OBSTYPE') == 'DARK':
return TagSet(['DARK'], blocks=['IMAGE', 'SPECT'])

@astro_data_descriptor
def array_name(self):

return self.phu.get(self._keyword_for('array_name'))

@astro_data_descriptor
def amp_read_area(self):

ampname = self.array_name()
detector_section = self.detector_section()
return "'{}':{}".format(ampname, detector_section)

Note: An actual Gemini Facility Instrument class will derive from gemini_instruments.
AstroDataGemini, but this is irrelevant for the example.

The class typically relies on functionality declared elsewhere, in some ancestor, e.g., the tag set computation is defined
at AstroData, and the _keyword_for method is defined at AstroDataFits.

Some highlights:

• __keyword_dict1 defines one-to-one mappings, assigning a more readable moniker for an HDU header
keyword. The idea here is to prevent hard-coding the names of the keywords, in the actual code. While these
are typically quite stable and not prone to change, it’s better to be safe than sorry, and this can come in useful

1 Note that the keyword dictionary is a “private” property of the class (due to the double-underscore prefix). Each class can define its own set,
which will not be replaced by derivative classes. _keyword_for is aware of this and will look up each class up the inheritance chain, in turn,
when looking up for keywords.

3.2. Writing an AstroData Derivative 7

Astrodata Programmer Manual, Release 3.0.1

during instrument development, which is the more likely source of instability. The actual value can be extracted
by calling self._keyword_for('moniker').

• _matches_data is a static method. It does not have any knowledge about the class itself, and it does not
work on an instance of the class: it’s a member of the class just to make it easier for the AstroData registry to
find it. This method is passed some object containing cues of the internal structure and contents of the data. This
could be, for example, an instance of HDUList, or DataProvider. Using these data, _matches_data
must return a boolean, with True meaning “I know how to handle this data”.

Note that True does not mean “I have full knowledge of the data”. It is acceptable for more than one class to
claim compatibility. For a GMOS FITS file, the classes that will return True are: AstroDataFits (because
it is a FITS file that comply with certain minimum requirements), AstroDataGemini (the data contains
Gemini Facility common metadata), and AstroDataGmos (the actual handler!).

But this does not mean that multiple classes can be valid “final” candidates. If AstroData’s automatic class
discovery finds more than one class claiming matching with the data, it will start discarding them on the basis of
inheritance: any class that appears in the inheritance tree of another one is dropped, because the more specialized
one is preferred. If at some point the algorithm cannot find more classes to drop, and there is more than one left
in the list, an exception will occur, as AstroData will have no way to choose one over the other.

• A number of “tag methods” have been declared. Their naming is a convention, at the end of the day (the
“_tag_” prefix, and the related “_status_” one, are just hints for the programmer): each team should estab-
lish a convention that works for them. What is important here is to decorate them using astro_data_tag,
which earmarks the method so that it can be discovered later, and ensures that it returns an appropriate value.

A tag method will return either a TagSet instance (which can be empty), or None, which is the same as
returning an empty TagSet2.

All these methods will be executed when looking up for tags, and it’s up to the tag set construction algorithm
(see Tags) to figure out the final result. In theory, one could provide just one big method, but this is feasible only
when the logic behind deciding the tag set is simple. The moment that there are a few competing alternatives,
with some conditions precluding other branches, one may end up with a rather complicated dozens of lines of
logic. Let the algorithm do the heavy work for you: split the tags as needed to keep things simple, with an easy
to understand logic.

Also, keeping the individual (or related) tags in separate methods lets you exploit the inheritance, keeping
common ones at a higher level, and redefining them as needed later on, at derived classes.

Please, refer to AstroDataGemini, AstroDataGmos, and AstroDataGnirs for examples using most
of the features.

• The AstroDataFits.load method calls the FitsLoader.load method, which uses metadata in the
FITS headers to determine how the data should be stored in the AstroData object. In particular, the EXTNAME
and EXTVER keywords are used to assign individual FITS HDUs, using the same names (SCI, DQ, and VAR)
as Gemini-IRAF for the data, mask, and variance planes. A SCI HDU must exist if there is another HDU
with the same EXTVER, or else an error will occur.

If the raw data do not conform to this format, the AstroDataFits.load method can be overridden by your
class, by having it call the FitsLoader.load method with an additional parameter, extname_parser, that
provides a function to modify the header. This function will be called on each HDU before further process-
ing. As an example, the SOAR Adaptive Module Imager (SAMI) instrument writes raw data as a 4-extension
MEF file, with the extensions having EXTNAME values im1, im2, etc. These need to be modified to SCI,
and an appropriate EXTVER keyword added‘3. This can be done by writing a suitable load method for the
AstroDataSami class:

2 Notice that the example functions will return only a TagSet, if appropriate. This is OK, remember that every function in Python returns a
value, which will be None, implicitly, if you don’t specify otherwise.

3 An EXTVER keyword is not formally required as the FitsLoader.load method will assign the lowest available integer to a SCI header
with no EXTVER keyword (or if its value is -1). But we wish to be able to identify the original im1 header by assigning it an EXTVER of 1, etc.

3.2. Writing an AstroData Derivative 8

Astrodata Programmer Manual, Release 3.0.1

@classmethod
def load(cls, source):

def sami_parser(hdu):
m = re.match('im(\d)', hdu.header.get('EXTNAME', ''))
if m:

hdu.header['EXTNAME'] = ('SCI', 'Added by AstroData')
hdu.header['EXTVER'] = (int(m.group(1)), 'Added by AstroData')

return cls(FitsLoader(FitsProvider).load(source, extname_parser=sami_parser))

• Descriptors will make the bulk of the class: again, the name is arbitrary, and it should be descriptive. What may
be important here is to use astro_data_descriptor to decorate them. This is not required, because unlike
tag methods, descriptors are meant to be called explicitly by the programmer, but they can still be earmarked
(using this decorator) to be listed when calling the descriptors property. The decorator does not alter the
descriptor input or output in any way, so it is always safe to use it, and you probably should, unless there’s a
good reason against it (e.g., if a descriptor is deprecated and you don’t want it to show up in lookups).

More detailed information can be found in Descriptors.

3.2.3 Register your class

Finally, you need to include your class in the AstroData Registry. This is an internal structure with a list of all the
AstroData-derived classes that we want to make available for our programs. Including the classes in this registry is
an important step, because a file should be opened using astrodata.open or astrodata.create, which uses
the registry to identify the appropriate class (via the _matches_data methods), instead of having the user specify
it explicitly.

The version of AstroData prior to DRAGONS had an auto-discovery mechanism, that explored the source tree looking
for the relevant classes and other related information. This forced a fixed directory structure (because the code needed
to know where to look for files), and gave the names of files and classes semantic meaning (to know which files to
look into, for example). Aside from the rigidness of the scheme, this introduced all sort of inefficiencies, including an
unacceptably high overhead when importing the AstroData package for the first time during execution.

In this new version of AstroData we’ve introduced a more manageable scheme, that places the discovery responsibility
on the programmer. A typical __init__.py file on an instrument package will look like this:

__all__ = ['AstroDataMyInstrument']

from astrodata import factory
from .adclass import AstroDataMyInstrument

factory.addClass(AstroDataMyInstrument)

The call to factory.addClass is the one registering the class. This step needs to be done before the class can
be used effectively in the AstroData system. Placing the registration step in the __init__.py file is convenient,
because importing the package will be enough!

Thus, a script making use of DRAGONS’ AstroData to manipulate GMOS data could start like this:

import astrodata
from gemini_instruments import gmos

...

ad = astrodata.open(some_file)

3.2. Writing an AstroData Derivative 9

Astrodata Programmer Manual, Release 3.0.1

The first import line is not needed, technically, because the gmos package will import it too, anyway, but we’ll
probably need the astrodata package in the namespace anyway, and it’s always better to be explicit. Our typical
DRAGONS scripts and modules start like this, instead:

import astrodata
import gemini_instruments

gemini_instruments imports all the packages under it, making knowledge about all Gemini instruments avail-
able for the script, which is perfect for a multi-instrument pipeline, for example. Loading all the instrument classes is
not typically a burden on memory, though, so it’s easier for everyone to take the more general approach. It also makes
things easier on the end user, because they won’t need to know internal details of our packages (like their naming
scheme). We suggest this “cascade import” scheme for all new source trees, letting the user decide which level of
detail they need.

As an additional step, the __init__.py file in a package may do extra initialization. For example, for the Gemini
modules, one piece of functionality that is shared across instruments is a descriptor that translates a filter’s name
(say “u” or “FeII”) to its central wavelength (e.g., 0.35µm, 1.644µm). As it is a rather common function for us, it
is implemented by AstroDataGemini. This class does not know about its daughter classes, though, meaning
that it cannot know about the filters offered by their instruments. Instead, we offer a function that can be used to
update the filter → wavelength mapping in gemini_instruments.gemini.lookup so that it is accessible by
the AstroDataGemini-level descriptor. So our gmos.__init__.py looks like this:

__all__ = ['AstroDataGmos']

from astrodata import factory
from ..gemini import addInstrumentFilterWavelengths
from .adclass import AstroDataGmos
from .lookup import filter_wavelengths

factory.addClass(AstroDataGmos)
Use the generic GMOS name for both GMOS-N and GMOS-S
addInstrumentFilterWavelengths('GMOS', filter_wavelengths)

where addInstrumentfilterWavelengths is provided by the gemini package to perform the update in a
controlled way.

We encourage package maintainers and creators to follow such explicit initialization methods, driven by the modules
that add functionality themselves, as opposed to active discovery methods on the core code. This favors decoupling
between modules, which is generally a good idea.

3.2. Writing an AstroData Derivative 10

CHAPTER 4

Data Providers

AstroData derivative classes act as a front end. Most of the heavy lifting is actually performed by a
DataProvider class. There will typically be one data provider per kind of data structure (so far, DRAGONS offers
only astrodata.fits.FitsProvider), and possibly one data provider proxy, used to simplify the handling
of data slicing (mapping most of it operations to a regular data provider.)

The data provider acts as a hierarchical data storage. At the top level, it contains:

• A sequence of “extensions”, representing individual data planes and their associated metadata, likely to represent
separate detectors or amplifiers. One can access these extensions by index (e.g., ad[5]). Indexing starts at 0,
following Python’s convention.

• Global objects like masks or tables affecting all the extensions.

Each extension, in turn, is an instance of a Data Container, keeping important metadata (e.g., a FITS HDU’s header)
and the main data for the extension (e.g., the data for a SCI extension, on Gemini data), along with any other associated
data (masks, variance plane, tables, etc).

astrodata.core.DataProvider is, again, an abstract class, defining the minimum interface expected from a
data provider. This interface is described in greater detail in the API Reference Guide, but among other things, one
would need to implement:

• is_settable: AstroData exposes attributes from its data provider through its own __getattr__ and
__setattr__. When trying to set a value for an attribute, AstroData will use this method to discover
whether the attribute can be modified.

• append: a very important method, used to add new top-level components to the provider.

• __getitem__: which returns a sliced view1 of the provider itself, meant to work with isolated extensions
(examples of such a view are instances of astrodata.fits.FitsProviderProxy). The view should
behave in almost every way as a normal provider.

• __len__: number of science extensions contained in this instance.

• __iadd__, __isub__, __imul__, __itruediv__; used to perform in-place operations over the data.

1 For efficiency reasons, and to keep just one version of the data. The method may decide to return a sliced copy instead, but this is a design
decision.

11

Astrodata Programmer Manual, Release 3.0.1

• data, uncertainty, mask, variance: properties used to access certain common content. These methods
generally return lists, with one element per extension.

There are also a number of properties that are not declared as abstract, but still need to be reimplemented if one would
want any kind of proper behavior from the class: exposed (used to determine if a certain attribute is to be “exposed”
to the user through the AstroData class), is_sliced, and is_single. Of particular interest is this later one:
is_single is a predicate that should return True only if a data provider has been sliced using a single index, e.g.:

>>> d1 = provider[:4]
>>> d1.is_sliced, d1.is_single
(True, False)
>>> d2 = provider[3]
>>> d2.is_sliced, d2.is_single
(True, True)

This is important for the AstroData interface. When a data provider is being considered a “single” slice, the behavior
of many methods change. For example, we mentioned that the data property generally returns a list. If the data
provider in question is a single slice, then data would return a single (i.e., scalar) element. This behavior is
often seen also in Descriptors. Refer always to the to documentation of a method to figure out how they behave. As
programmers, you should always include this explicitly in the documentation, even if it’s implicit to AstroData.

4.1 Implementation Guidelines

AstroData does not impose any restriction on how to organize the data internally, or how to deal with slicing. On slic-
ing, we chose to use a “proxy” class for FitsProvider. So, when sliced (through __getitem__), a FitsProvider
will return a FitsProviderProxy, which is also a descendant of DataProvider and reproduces the interface
of its “proxied” class.

More importantly, FitsProviderProxy keeps an internal mapping of the sliced extensions. So, we may be
referring to sliced[0] and this would be mapped to, say, nonsliced[3]. FitsProviderProxy.

Both FitsProvider and FitsProviderProxy can be studied as an example implementation, but there is no
need to follow them: please, evaluate carefully the needs for your design, and feel free to depart from ours. As long as
the minimum interface is honored, AstroData will work as intended.

Note also that these classes were subject to heavy changes during development and a future release cycle should see
them refactored for clarity and to drop any remnants of interfaces that were deprecated before the initial DRAGONS
public release.

As a last comment: remember that AstroData exposes its underlying DataProvider interface up to a certain
point. This can be used to dynamically expose to the user additional attributes, dependent on the underlying technol-
ogy, or even to the instrument, if needed. This is all fine and encouraged as long as everything is well documented,
and the user understands that certain parts of the interface may not be available when using different observatory’s
files, for example.

4.2 Registering a Data Provider to be Used with AstroData

Once we have a new data provider class, we need to let AstroData know how to use it, and which class will make use
of it. Normally a new data provider will be associated to a new second level AstroData class (ie. a direct descendant to
AstroData, and a sibling of AstroDataFits). This does not have to be always the case, though: if an observatory
organizes their FITS files in a way that significantly departs from Gemini’s, then creating a separate data provider may
be justified, if it makes it easier to deal with the data.

4.1. Implementation Guidelines 12

Astrodata Programmer Manual, Release 3.0.1

There are no instances of this as of yet, but we’ve made a conscious effort during the design phase to make as easy as
possible to plug in new providers. Future release of this document will address this topic.

4.2. Registering a Data Provider to be Used with AstroData 13

CHAPTER 5

Data Containers

A third, and very important part of the AstroData core package is the data container. We have chosen to extend
Astropy’s NDData1 with our own requirements, particularly lazy-loading of data using by opening the FITS files in
read-only, memory-mapping mode, and exploiting the windowing capability of PyFITS2 (using section) to reduce
our memory requirements, which becomes important when reducing data (e.g., stacking).

We document our container for completeness and for reference, but note that its use is intimately linked to
FitsProvider. If you’re implementing an alternative data provider, you do not need to follow our design.

We’ll describe here how we depart from NDData, and how do we integrate the data containers with the rest of the
package. Please refer to NDData for the full interface.

Our main data container is astrodata.nddata.NDAstroData. Fundamentally, it is a derivative of astropy.
nddata.NDData, plus a number of mixins to add functionality:

class NDAstroData(NDArithmeticMixin, NDSlicingMixin, NDData):
...

This allows us out of the box to have proper arithmetic with error propagation, and slicing the data with the array
syntax.

Our first customization is NDAstroData.__init__. It relies mostly on the upstream initialization, but cus-
tomizes it because our class is initialized with lazy-loaded data wrapped around a custom class (astrodata.fits.
FitsLazyLoadable) that mimics a PyFITS HDU instance just enough to play along with NDData’s initialization
code.

FitsLazyLoadable is an integral part of our memory-mapping scheme, and among other things it will scale data
on the fly, as memory-mapped FITS data can only be read unscaled. Our NDAstroData redefines the properties data,
uncertainty, and mask, in two ways:

• To deal with the fact that our class is storing FitsLazyLoadable instances, not arrays, as NDData would
expect. This is to keep data out of memory as long as possible.

• To replace lazy-loaded data with a real in-memory array, under certain conditions (e.g., if the data is modified,
as we won’t apply the changes to the original file!)

1 Astropy: N-dimensional datasets
2 I mention PyFITS because of familiarity and for short, but in reality we’re using Astropy’s fits.io module.

14

http://docs.astropy.org/en/stable/nddata

Astrodata Programmer Manual, Release 3.0.1

Our obsession with lazy-loading and discarding data is directed to reduce memory fragmentation as much as possible.
This is a real problem that can hit applications dealing with large arrays, particularly when using Python. Given the
choice to optimize for speed or for memory consumption, we’ve chosen the latter, which is the more pressing issue.

Another addition of as is the variance property as a convenience for the user. Astropy, so far, only provides
a standard deviation class for storing uncertainties and the code to propagate errors stored this way already exists.
However, our coding elsewhere is greatly simplified if we are able to access and set the variance directly.

Lastly, we’ve added another new property, window, that can be used to explicitly exploit the PyFITS section
property, to (again) avoid loading unneeded data to memory. This property returns an instance of NDWindowing
which, when sliced, in turn produces an instance of NDWindowingAstroData, itself a proxy of NDAstroData.
This scheme may seem complex, but it was deemed the easiest and cleanest way to achieve the result that we were
looking for.

Note: We expect to make changes to NDAstroData in future releases. In particular, we plan to make use of the
wcs and unit attributes provided by the NDData class and increase the use of memory-mapping by default. These
changes mostly represent increased functionality and we anticipate a high (and possibly full) degree of backward
compatibility.

15

CHAPTER 6

Tags

We described above how to generate tags for an AstroData derivative. In this section we’ll describe the algorithm that
generates the complete tag set out of the individual TagSet instances. The algorithm collects all the tags in a list and
then decides whether to apply them or not following certain rules, but let’s talk about TagSet first.

TagSet is actually a standard named tuple customized to generate default values (None) for its missing members.
Its signature is:

TagSet(add=None, remove=None, blocked_by=None, blocks=None,
if_present=None)

The most common TagSet is an additive one: TagSet(['FOO', 'BAR']). If all you need is to add tags, then
you’re done here. But the real power of our tag generating system is that you can specify some conditions to apply a
certain TagSet, or put restrictions on others. The different arguments to TagSet all expect a list (or some others
work in the the following way):

• add: if this TagSet is selected, then add all these members to the tag set.

• remove: if this TagSet is selected, then prevent all these members from joining the tag set.

• blocked_by: if any of the tags listed in here exist in the tag set, then discard this TagSet altogether.

• blocks: discard from the list of unprocessed ones any TagSet that would add any of the tags listed here.

• if_present: process this tag only if all the tags listed in here exist in the tag set at this point.

Note that blocked_by and blocks look like two sides of the same coin. This is intentional: which one to use is
up to the programmer, depending on what will reduce the amount of typing and/or make the logic easier (sometimes
one wants to block a bunch of other tags from a single one; sometimes one wants a tag to be blocked by a bunch of
others). Furthermore, while blocks and blocked_by prevent the entire TagSet from being added if it contains a
tag affected by these, remove only affects the specific tag.

Now, the algorithm works like this:

1. Collect all the TagSet generated by methods in the instance that are decorated using astro_data_tag.

2. Then we sort them out:

16

Astrodata Programmer Manual, Release 3.0.1

1. Those that subtract tags from the tag set go first (the ones with non-empty remove or blocks), allowing
them to act early on

2. Those with non-empty blocked_by are moved to the end of the list, to ensure that other tags can be
generated before them.

3. Those with non-empty if_present are moved behind those with blocked_by.

3. Now that we’ve sorted the tags, process them sequentially and for each one:

1. If they require other tags to be present, make sure that this is the case. If the requirements are not met,
drop the tagset. If not. . .

2. Figure out if any other tag is blocking the tagset. This will be the case if any of the tags to be added is in
the “blocked” list, or if any of the tags added by previous tag sets are in the blocked_by list of the one
being processed. Then. . .

3. If all the previous hurdles have been passed, apply the changes declared by this tag (add, remove, and/or
block others).

Note that Python’s sort algorithm is stable. This means, that if two elements are indistinguishable from the point of
view of the sorting algorithm, they are guaranteed to stay in the same relative position. To better understand how this
affects our tags, and the algorithm itself, let’s follow up with an example taken from real code (the Gemini-generic
and GMOS modules):

Simple tagset, with only a constant, additive content
@astro_data_tag
def _tag_instrument(self):

return TagSet(['GMOS'])

Simple tagset, also with additive content. This one will
check if the frame fits the requirements to be classified
as "GMOS imaging". It returns a value conditionally:
if this is not imaging, then it will return None, which
means the algorithm will ignore the value
@astro_data_tag
def _tag_image(self):

if self.phu.get('GRATING') == 'MIRROR':
return TagSet(['IMAGE'])

This is a slightly more complex TagSet (but fairly simple, anyway),
inherited by all Gemini instruments.
@astro_data_tag
def _type_gcal_lamp(self):

if self.phu.get('GCALLAMP') == 'IRhigh':
shut = self.phu.get('GCALSHUT')
if shut == 'OPEN':

return TagSet(['GCAL_IR_ON', 'LAMPON'],
blocked_by=['PROCESSED'])

elif shut == 'CLOSED':
return TagSet(['GCAL_IR_OFF', 'LAMPOFF'],

blocked_by=['PROCESSED'])

This tagset is only active when we detect that the frame is
a bias. In that case we want to prevent the frame from being
classified as "imaging" or "spectroscopy", which depend on the
configuration of the instrument
@astro_data_tag
def _tag_bias(self):

(continues on next page)

17

Astrodata Programmer Manual, Release 3.0.1

(continued from previous page)

if self.phu.get('OBSTYPE') == 'BIAS':
return TagSet(['BIAS', 'CAL'], blocks=['IMAGE', 'SPECT'])

These four simple tag methods will serve to illustrate the algorithm. Let’s pretend that the requirements for all four of
them are somehow met, meaning that we get four TagSet instances in our list, in some random order. After step 1 in
the algorithm, then, we may have collected the following list:

[TagSet(['GMOS']),
TagSet(['GCAL_IR_OFF', 'LAMPOFF'], blocked_by=['PROCESSED']),
TagSet(['BIAS', 'CAL'], blocks=['IMAGE', 'SPECT']),
TagSet(['IMAGE'])]

The algorithm then proceeds to sort them. First, it will promote the TagSet with non-empty blocks or remove:

[TagSet(['BIAS', 'CAL'], blocks=['IMAGE', 'SPECT']),
TagSet(['GMOS']),
TagSet(['GCAL_IR_OFF', 'LAMPOFF'], blocked_by=['PROCESSED']),
TagSet(['IMAGE'])]

Note that the other three TagSet stay in exactly the same order. Now the algorithm will sort the list again, moving
the ones with non-empty blocked_by to the end:

[TagSet(['BIAS', 'CAL'], blocks=['IMAGE', 'SPECT']),
TagSet(['GMOS']), TagSet(['IMAGE']),
TagSet(['GCAL_IR_OFF', 'LAMPOFF'], blocked_by=['PROCESSED'])]

Note that at each step, all the instances (except the ones “being moved”) have kept the same position relative to each
other -here’s where the “stability” of the sorting comes into play,- ensuring that each step does not affect the previous
one. Finally, there are no if_present in our example, so no more instances are moved around.

Now the algorithm prepares three empty sets (tags, removals, and blocked), and starts iterating over the
TagSet list.

1. For the first TagSet there are no blocks or removals, so we just add its contents to the current sets: tags =
{'BIAS', 'CAL'}, blocked = {'IMAGE', 'SPECT'}.

2. Then comes TagSet(['GMOS']). Again, there are no removals in place, and GMOS is not in the list of
blocked tags. Thus, we just add it to the current tag set: tags = {'BIAS', 'CAL', 'GMOS'}.

3. When processing TagSet(['IMAGE']), the algorithm observes that this IMAGE is in the blocked set, and
stops processing this tag set.

4. Finally, neither GCAL_IR_OFF nor LAMPOFF are in blocked, and PROCESSED is not in tags, meaning
that we can add this tag set to the final one.

Our result will look something like: {'BIAS', 'CAL', 'GMOS', 'GCAL_IR_OFF', 'LAMPOFF'}

18

CHAPTER 7

Descriptors

Descriptors are just regular methods that translate metadata from the raw storage (e.g., cards from FITS headers) to
values useful for the user, potentially doing some processing in between. They exist to:

• Abstract the actual organization of the metadata; e.g. AstroDataGemini takes the detector gain from a
keyword in the FITS PHU, where AstroDataNiri overrides this to provide a hard-coded value.

More complex implementations also exist. In order to determine the gain of a GMOS observation,
AstroDataGmos uses the observation date (provided by a descriptor) to select a particular lookup table,
and then uses the values of other descriptors to select the correct entry in the table.

• Provide a common interface to a set of instruments. This simplifies user training (no need to learn a different
API for each instrument), and facilitates the reuse of code for pipelines, etc.

• Also, since FITS header keywords are limited to 8 characters, for simple keyword → value mappings, they
provide a more meaningful and readable name.

Descriptors should be decorated using astrodata.core.astro_data_descriptor. The only function of
this decorator is to ensure that the descriptor is marked as such: it does not alter its input or output in any way. This
lets the user explore the API of an AstroData object via the descriptors property.

Descriptors can be decorated with astrodata.core.returns_list to eliminate the need to code some logic.
Some descriptors return single values, while some return lists, one per extension. Typically, the former are descriptors
that refer to the entire observation (and, for MEF files, are usually extracted from metadata in the PHU, such as
airmass), while the latter are descriptors where different extensions might return different values (and typically
come from metadata in the individual HDUs, such as gain). A list is returned even if there is only one extension
in the AstroData object, as this allows code to be written generically to iterate over the AstroData object and the
descriptor return, without needing to know how many extensions there are. The returns_list decorator ensures
that the descriptor returns an appropriate object (value or list), using the following rules:

• If the AstroData object is not a single slice:

– If the undecorated descriptor returns a list, an exception is raised if the list is not the same length as the
number of extensions.

– If the undecorated descriptor returns a single value, the decorator will turn it into a list of the correct length
by copying this value.

19

Astrodata Programmer Manual, Release 3.0.1

• If the AstroData object is a single slice and the undecorated descriptor returns a list, only the first element is
returned.

An example of the use of this decorator is the AstroDataNiri gain descriptor, which reads the value from a
lookup table and simply returns it. A single value is only appropriate if the AstroData object is singly-sliced and the
decorator ensures that a list is returned otherwise.

20

APPENDIX A

API Reference Guide

A.1 Abstract Classes

These classes are the top of their respective hierarchies, and need to be fully implemented before being used. DRAG-
ONS ships with implementations covering the usage of Gemini-style FITS files.

A.1.1 AstroData

class astrodata.core.AstroData(provider)
Base class for the AstroData software package. It provides an interface to manipulate astronomical data sets.

Parameters provider (DataProvider) – The data that will be manipulated through the Astro-
Data instance.

add(oper)
Alias for __iadd__

subtract(oper)
Alias for __isub__

multiply(oper)
Alias for __imul__

divide(oper)
Alias for __itruediv__

__add__(oper)
Implements the binary arithmetic operation + with AstroData as the left operand.

Parameters oper (number or object) – The operand to be added to this instance. The
accepted types depend on the DataProvider.

Returns

Return type A new AstroData instance

21

https://docs.python.org/3/library/functions.html#object

Astrodata Programmer Manual, Release 3.0.1

__contains__(attribute)
Implements the ability to use the in operator with an AstroData object. It will look up the specified attribute
name within the exposed members of the internal DataProvider object. Refer to the concrete DataProvider
implementation’s documentation to know what members are exposed.

Parameters attribute (string) – An attribute name

Returns

Return type A boolean

__deepcopy__(memo)
Returns a new instance of this class, initialized with a deep copy of the associted DataProvider

Parameters memo (dict) – See the documentation on deepcopy for an explanation on how this
works

Returns

Return type A deep copy of this instance

__delattr__(attribute)
Implements attribute removal. If self represents a single slice, the

__delitem__(idx)
Called to implement deletion of self[idx]. Supports standard Python syntax (including negative indices).

Parameters idx (integer) – This index represents the order of the element that you want to
remove.

Raises IndexError – If idx is out of range

__getattr__(attribute)
Called when an attribute lookup has not found the attribute in the usual places (not an instance attribute,
and not in the class tree for self).

This is implemented to provide access to objects exposed by the DataProvider

Parameters attribute (string) – The attribute’s name

Raises AttributeError – If the attribute could not be found/computed.

__getitem__(slicing)
Returns a sliced view of the instance. It supports the standard Python indexing syntax.

Parameters slice (int, slice) – An integer or an instance of a Python standard slice object

Raises

• TypeError – If trying to slice an object when it doesn’t make sense (eg. slicing a single
slice)

• ValueError – If slice does not belong to one of the recognized types

• IndexError – If an index is out of range

__iadd__(oper)
Implements the augmented arithmetic assignment +=.

Parameters oper (number or object) – The operand to be added to this instance. The
accepted types depend on the DataProvider.

Returns

Return type self

A.1. Abstract Classes 22

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#object

Astrodata Programmer Manual, Release 3.0.1

__imul__(oper)
Implements the augmented arithmetic assignment *=.

Parameters oper (number or object) – The operand to be multiplied to this instance.
The accepted types depend on the DataProvider.

Returns

Return type self

__init__(provider)
Initialize self. See help(type(self)) for accurate signature.

__isub__(oper)
Implements the augmented arithmetic assignment -=.

Parameters oper (number or object) – The operand to be subtracted to this instance.
The accepted types depend on the DataProvider.

Returns

Return type self

__len__()
Number of independent extensions stored by the DataProvider

Returns

Return type A non-negative integer.

__mul__(oper)
Implements the binary arithmetic operation * with AstroData as the left operand.

Parameters oper (number or object) – The operand to be multiplied to this instance.
The accepted types depend on the DataProvider.

Returns

Return type A new AstroData instance

__radd__(oper)
Implements the binary arithmetic operation + with AstroData as the left operand.

Parameters oper (number or object) – The operand to be added to this instance. The
accepted types depend on the DataProvider.

Returns

Return type A new AstroData instance

__rmul__(oper)
Implements the binary arithmetic operation * with AstroData as the left operand.

Parameters oper (number or object) – The operand to be multiplied to this instance.
The accepted types depend on the DataProvider.

Returns

Return type A new AstroData instance

__setattr__(attribute, value)
Called when an attribute assignment is attempted, instead of the normal mechanism. This method will
check first with the DataProvider: if the DP says it will contain this attribute, or that it will accept it
for setting, then the value will be stored at the DP level. Otherwise, the regular attribute assignment
mechanisme takes over and the value will be store as an instance attribute of self.

A.1. Abstract Classes 23

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Astrodata Programmer Manual, Release 3.0.1

Parameters

• attribute (string) – The attribute’s name

• value (object) – The value to be assigned to the attribute

Returns

• If the value is passed to the DataProvider, and it is not of an acceptable type,

• a ValueError (or other exception) may be rised. Please, check the appropriate

• documentation for this.

__sub__(oper)
Implements the binary arithmetic operation - with AstroData as the left operand.

Parameters oper (number or object) – The operand to be subtracted to this instance.
The accepted types depend on the DataProvider.

Returns

Return type A new AstroData instance

__truediv__(oper)
Implements the binary arithmetic operation / with AstroData as the left operand.

Parameters oper (number or object) – The operand to be divided to this instance. The
accepted types depend on the DataProvider.

Returns

Return type A new AstroData instance

__weakref__
list of weak references to the object (if defined)

append(extension, name=None, *args, **kw)
Adds a new top-level extension to the provider. Please, read the the concrete DataProvider documentation
that is being used to know the exact behavior and additional accepted arguments.

Parameters

• extension (array, Table, or other) – The contents for the new extension.
Usually the underlying DataProvider will understand how to deal with regular NumPy
arrays and with AstroData Table instances, but it may also accept other types.

• name (string, optional) – A DataProvider will usually require a name for exten-
sions. If the name cannot be derived from the metadata associated to extension, you will
have to provider one.

• args (optional) – The DataProvider may accept additional arguments. Please, refer
to its documentation.

• kw (optional) – The DataProvider may accept additional arguments. Please, refer to
its documentation.

Returns

• The instance that has been added internally (potentially *not the same that*

• was passed as *extension)*

Raises

• TypeError – Will be raised if the DataProvider doesn’t know how to deal with the data
that has been passed.

A.1. Abstract Classes 24

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#TypeError

Astrodata Programmer Manual, Release 3.0.1

• ValueError – Raised if the extension is of a proper type, but its value is illegal some-
how.

descriptors
Returns a sequence of names for the methods that have been decorated as descriptors.

Returns

Return type A tuple of str

info()
Prints out information about the contents of this instance. Implemented by the derived classes.

load(source)
Class method that returns an instance of this same class, properly initialized with a DataProvider that can
deal with the object passed as source

This method is abstract and has to be implemented by derived classes.

operate(operator, *args, **kwargs)
Applies a function to the main data array on each extension, replacing the data with the result. The data
will be passed as the first argument to the function.

It will be applied to the mask and variance of each extension, too, if they exist.

This is a convenience method, which is equivalent to:

for ext in ad:
ad.ext.data = operator(ad.ext.data, *args, **kwargs)
ad.ext.mask = operator(ad.ext.mask, *args, **kwargs) if ad.ext.mask is

→˓not None else None
ad.ext.variance = operator(ad.ext.variance, *args, **kwargs) if ad.ext.

→˓variance is not None else None

with the additional advantage that it will work on single slices, too.

Parameters

• operator (function, or bound method) – A function that takes an array (and,
maybe, other arguments) and returns an array

• args (optional) – Additional arguments to be passed positionally to the operator

• kwargs (optional) – Additional arguments to be passed by name to the operator

Examples

>>> import numpy as np
>>> ad.operate(np.squeeze) # doctest: +SKIP

reset(data, mask=-23, variance=-23, check=True)
Sets the .data, and optionally .mask and .variance attributes of a single-extension AstroData slice. This
function will optionally check whether these attributes have the same shape.

Parameters

• data (ndarray) – The array to assign to the .data attribute (“SCI”)

• mask (ndarray, optional) – The array to assign to the .mask attribute (“DQ”)

• variance (ndarray, optional) – The array to assign to the .variance attribute
(“VAR”)

A.1. Abstract Classes 25

https://docs.python.org/3/library/exceptions.html#ValueError

Astrodata Programmer Manual, Release 3.0.1

• check (bool) – If set, then the function will check that the mask and variance arrays
have the same shape as the data array

Raises

• TypeError – if an attempt is made to set the .mask or .variance attributes with something
other than an array

• ValueError – if the .mask or .variance attributes don’t have the same shape as .data,
OR if this is called on an AD instance that isn’t a single extension slice

tags
A set of strings that represent the tags defining this instance

A.1.2 DataProvider

class astrodata.core.DataProvider
Abstract class describing the minimal interface that DataProvider derivative classes need to implement.

__getitem__(slice)
Returns a sliced view of the provider. It supports the standard Python indexing syntax, including negative
indices.

Parameters slice (int, slice) – An integer or an instance of a Python standard slice object

Raises

• TypeError – If trying to slice an object when it doesn’t make sense (eg. slicing a single
slice)

• ValueError – If slice does not belong to one of the recognized types

• IndexError – If an index is out of range

__iadd__(oper)
This method should attempt to do an in-place (modifying self) addition of each internal science object and
the oper.

Parameters oper (object) – An operand to add to the internal science objects. The actual
accepted type depends on the implementation

Returns

• Generally, it should return self. The implementations may decide to return

• something else instead.

__imul__(oper)
This method should attempt to do an in-place (modifying self) multiplication of each internal science
object and the oper.

Parameters oper (object) – An operand to multiply the internal science objects by. The
actual accepted type depends on the implementation

Returns

• Generally, it should return self. The implementations may decide to return

• something else instead.

__isub__(oper)
This method should attempt to do an in-place (modifying self) subtraction of each internal science object
and the oper.

A.1. Abstract Classes 26

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Astrodata Programmer Manual, Release 3.0.1

Parameters oper (object) – An operand to subtract from the internal science objects. The
actual accepted type depends on the implementation

Returns

• Generally, it should return self. The implementations may decide to return

• something else instead.

__itruediv__(oper)
This method should attempt to do an in-place (modifying self) division of each internal science object and
the oper.

Parameters oper (object) – An operand to divide the internal science objects by. The actual
accepted type depends on the implementation

Returns

• Generally, it should return self. The implementations may decide to return

• something else instead.

__len__()
“Length” of the object. This method will typically return the number of science objects contained by this
provider, but this may change depending on the implementation.

Returns

Return type An integer

__weakref__
list of weak references to the object (if defined)

append(ext, name=None)
Adds a new component to the provider. Objects appended to a single slice will actually be made hierarchi-
cally dependent of the science object represented by that slice. If appended to the provider as a whole, the
new member will be independent (eg. global table, new science object).

Parameters

• ext (array, NDData, Table, etc) – The component to be added. The exact accepted types
depend on the class implementing this interface. Implementations specific to certain data
formats may accept specialized types (eg. a FITS provider will accept an ImageHDU and
extract the array out of it)

• name (str, optional) – A name that may be used to access the new object, as an
attribute of the provider. The name is typically ignored for top-level (global) objects, and
required for the others.

It can consist in a combination of numbers and letters, with the restriction that the letters
have to be all capital, and the first character cannot be a number (“[A-Z][A-Z0-9]*”).

Returns

• The same object, or a new one, if it was necessary to convert it to a more

• suitable format for internal use.

Raises

• TypeError – If adding the object in an invalid situation (eg. name is None when adding
to a single slice)

• ValueError – If adding an object that is not acceptable

A.1. Abstract Classes 27

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Astrodata Programmer Manual, Release 3.0.1

data
A list of the the arrays (or single array, if this is a single slice) corresponding to the science data attached
to each extension, in loading/appending order.

exposed
A collection of strings with the names of objects that can be accessed directly by name as attributes of this
instance, and that are not part of its standard interface (ie. data objects that have been added dynamically).

Examples

>>> ad[0].exposed # doctest: +SKIP
set(['OBJMASK', 'OBJCAT'])

is_settable(attribute)
Predicate that can be used to figure out if certain attribute of the DataProvider is meant to be modified by
an external object.

This is used mostly by AstroData, which acts as a proxy exposing attributes of its assigned provider, to
decide if it should set a value on the provider or on itself.

Parameters attribute (str) –

Returns

Return type A boolean

is_single
If this data provider represents a single slice out of a whole dataset, return True. Otherwise, return False.

Returns

Return type A boolean

is_sliced
If this data provider instance represents the whole dataset, return False. If it represents a slice out of the
whole, return True.

Returns

Return type A boolean

mask
A list of the mask arrays (or a single array, if this is a single slice) attached to the science data, for each
extension, in loading/appending order.

For objects that miss a mask, None will be provided instead.

uncertainty
A list of the uncertainty objects (or a single object, if this is a single slice) attached to the science data, for
each extension, in loading/appending order.

The objects are instances of AstroPy’s NDUncertainty, or None where no information is available.

See also:

variance The actual array supporting the uncertainty object

variance
A list of the variance arrays (or a single array, if this is a single slice) attached to the science data, for each
extension, in loading/appending order.

For objects that miss uncertainty information, None will be provided instead.

A.1. Abstract Classes 28

https://docs.python.org/3/library/stdtypes.html#str

Astrodata Programmer Manual, Release 3.0.1

See also:

uncertainty The NDUncertainty object used under the hood to propagate uncertainty when

operating

A.2 TagSet

class astrodata.core.TagSet(add=None, remove=None, blocked_by=None, blocks=None,
if_present=None)

Named tuple that is used by tag methods to return which actions should be performed on a tag set. All the
attributes are optional, and any combination of them can be used, allowing to create complex tag structures.
Read the documentation on the tag-generating algorithm if you want to better understand the interactions.

The simplest TagSet, though, tends to just add tags to the global set.

It can be initialized by position, like any other tuple (the order of the arguments is the one in which the attributes
are listed below). It can also be initialized by name.

add
Tags to be added to the global set

Type set of str, or None

remove
Tags to be removed from the global set

Type set of str, or None

blocked_by
Tags that will prevent this TagSet from being applied

Type set of str, or None

blocks
Other TagSets containing these won’t be applied

Type set of str, or None

if_present
This TagSet will be applied only all of these tags are present

Type set of str, or None

Examples

>>> TagSet()
TagSet(add=set(), remove=set(), blocked_by=set(), blocks=set(), if_present=set())
>>> TagSet({'BIAS', 'CAL'})
TagSet(add={'BIAS', 'CAL'}, remove=set(), blocked_by=set(), blocks=set(), if_
→˓present=set())
>>> TagSet(remove={'BIAS', 'CAL'})
TagSet(add=set(), remove={'BIAS', 'CAL'}, blocked_by=set(), blocks=set(), if_
→˓present=set())

A.2. TagSet 29

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Astrodata Programmer Manual, Release 3.0.1

A.3 NDAstroData

class astrodata.nddata.NDAstroData(data, uncertainty=None, mask=None, wcs=None,
meta=None, unit=None, copy=False, window=None)

Implements NDData with all Mixins, plus some AstroData specifics.

This class implements an NDData-like container that supports reading and writing as implemented in the
astropy.io.registry and also slicing (indexing) and simple arithmetics (add, subtract, divide and multi-
ply).

A very important difference between NDAstroData and NDData is that the former attempts to load all its
data lazily. There are also some important differences in the interface (eg. .data lets you reset its contents
after initialization).

Documentation is provided where our class differs.

See also:

NDData, NDArithmeticMixin, NDSlicingMixin

Examples

The mixins allow operation that are not possible with NDData or NDDataBase, i.e. simple arithmetics:

>>> from astropy.nddata import StdDevUncertainty
>>> import numpy as np
>>> data = np.ones((3,3), dtype=np.float)
>>> ndd1 = NDAstroData(data, uncertainty=StdDevUncertainty(data))
>>> ndd2 = NDAstroData(data, uncertainty=StdDevUncertainty(data))
>>> ndd3 = ndd1.add(ndd2)
>>> ndd3.data
array([[2., 2., 2.],

[2., 2., 2.],
[2., 2., 2.]])

>>> ndd3.uncertainty.array
array([[1.41421356, 1.41421356, 1.41421356],

[1.41421356, 1.41421356, 1.41421356],
[1.41421356, 1.41421356, 1.41421356]])

see NDArithmeticMixin for a complete list of all supported arithmetic operations.

But also slicing (indexing) is possible:

>>> ndd4 = ndd3[1,:]
>>> ndd4.data
array([2., 2., 2.])
>>> ndd4.uncertainty.array
array([1.41421356, 1.41421356, 1.41421356])

See NDSlicingMixin for a description how slicing works (which attributes) are sliced.

data
An array representing the raw data stored in this instance. It implements a setter.

set_section(section, input)
Sets only a section of the data. This method is meant to prevent fragmentation in the Python heap, by
reusing the internal structures instead of replacing them with new ones.

Parameters

A.3. NDAstroData 30

Astrodata Programmer Manual, Release 3.0.1

• section (slice) – The area that will be replaced

• input (NDData-like instance) – This object needs to implement at least data,
uncertainty, and mask. Their entire contents will replace the data in the area de-
fined by section.

Examples

>>> sec = NDData(np.zeros((100,100))) # doctest: +SKIP
>>> ad[0].nddata.set_section((slice(None,100),slice(None,100)), sec) #
→˓doctest: +SKIP

variance
A convenience property to access the contents of uncertainty, squared (as the uncertainty data is
stored as standard deviation).

window
Interface to access a section of the data, using lazy access whenever possible.

Returns

• An instance of NDWindowing, which provides __getitem__, to allow the use

• of square brackets when specifying the window. Ultimately, an

• NDWindowingAstrodata instance is returned

Examples

>>> ad[0].nddata.window[100:200, 100:200] # doctest: +SKIP
<NDWindowingAstrodata>

class astrodata.nddata.NDWindowingAstroData(target, window)
Allows “windowed” access to some properties of an NDAstroData instance. In particular, data,
uncertainty, variance, and mask return clipped data.

A.4 Decorators and other helper functions

astrodata.core.astro_data_descriptor(fn)
Decorator that will mark a class method as an AstroData descriptor. Useful to produce list of descriptors, for
example.

If used in combination with other decorators, this one must be the one on the top (ie. the last one applying). It
doesn’t modify the method in any other way.

Parameters fn (method) – The method to be decorated

Returns

Return type The tagged method (not a wrapper)

astrodata.core.astro_data_tag(fn)
Decorator that marks methods of an AstroData derived class as part of the tag-producing system.

It wraps the method around a function that will ensure a consistent return value: the wrapped method can return
any sequence of sequences of strings, and they will be converted to a TagSet. If the wrapped method returns
None, it will be turned into an empty TagSet.

A.4. Decorators and other helper functions 31

Astrodata Programmer Manual, Release 3.0.1

Parameters fn (method) – The method to be decorated

Returns

Return type A wrapper function

astrodata.core.returns_list(fn)
Decorator to ensure that descriptors that should return a list (of one value per extension) only returns single
values when operating on single slices; and vice versa.

This is a common case, and you can use the decorator to simplify the logic of your descriptors.

Parameters fn (method) – The method to be decorated

Returns

Return type A function

A.4. Decorators and other helper functions 32

Index

Symbols
__add__() (astrodata.core.AstroData method), 21
__contains__() (astrodata.core.AstroData method),

21
__deepcopy__() (astrodata.core.AstroData method),

22
__delattr__() (astrodata.core.AstroData method),

22
__delitem__() (astrodata.core.AstroData method),

22
__getattr__() (astrodata.core.AstroData method),

22
__getitem__() (astrodata.core.AstroData method),

22
__getitem__() (astrodata.core.DataProvider

method), 26
__iadd__() (astrodata.core.AstroData method), 22
__iadd__() (astrodata.core.DataProvider method), 26
__imul__() (astrodata.core.AstroData method), 22
__imul__() (astrodata.core.DataProvider method), 26
__init__() (astrodata.core.AstroData method), 23
__isub__() (astrodata.core.AstroData method), 23
__isub__() (astrodata.core.DataProvider method), 26
__itruediv__() (astrodata.core.DataProvider

method), 27
__len__() (astrodata.core.AstroData method), 23
__len__() (astrodata.core.DataProvider method), 27
__mul__() (astrodata.core.AstroData method), 23
__radd__() (astrodata.core.AstroData method), 23
__rmul__() (astrodata.core.AstroData method), 23
__setattr__() (astrodata.core.AstroData method),

23
__sub__() (astrodata.core.AstroData method), 24
__truediv__() (astrodata.core.AstroData method),

24
__weakref__ (astrodata.core.AstroData attribute), 24
__weakref__ (astrodata.core.DataProvider attribute),

27

A
add (astrodata.core.TagSet attribute), 29
add() (astrodata.core.AstroData method), 21
append() (astrodata.core.AstroData method), 24
append() (astrodata.core.DataProvider method), 27
astro_data_descriptor() (in module astro-

data.core), 31
astro_data_tag() (in module astrodata.core), 31
AstroData (class in astrodata.core), 21

B
blocked_by (astrodata.core.TagSet attribute), 29
blocks (astrodata.core.TagSet attribute), 29

D
data (astrodata.core.DataProvider attribute), 27
data (astrodata.nddata.NDAstroData attribute), 30
DataProvider (class in astrodata.core), 26
descriptors (astrodata.core.AstroData attribute), 25
divide() (astrodata.core.AstroData method), 21

E
exposed (astrodata.core.DataProvider attribute), 28

I
if_present (astrodata.core.TagSet attribute), 29
info() (astrodata.core.AstroData method), 25
is_settable() (astrodata.core.DataProvider

method), 28
is_single (astrodata.core.DataProvider attribute), 28
is_sliced (astrodata.core.DataProvider attribute), 28

L
load() (astrodata.core.AstroData method), 25

M
mask (astrodata.core.DataProvider attribute), 28
multiply() (astrodata.core.AstroData method), 21

33

Astrodata Programmer Manual, Release 3.0.1

N
NDAstroData (class in astrodata.nddata), 30
NDWindowingAstroData (class in astro-

data.nddata), 31

O
operate() (astrodata.core.AstroData method), 25

R
remove (astrodata.core.TagSet attribute), 29
reset() (astrodata.core.AstroData method), 25
returns_list() (in module astrodata.core), 32

S
set_section() (astrodata.nddata.NDAstroData

method), 30
subtract() (astrodata.core.AstroData method), 21

T
tags (astrodata.core.AstroData attribute), 26
TagSet (class in astrodata.core), 29

U
uncertainty (astrodata.core.DataProvider attribute),

28

V
variance (astrodata.core.DataProvider attribute), 28
variance (astrodata.nddata.NDAstroData attribute),

31

W
window (astrodata.nddata.NDAstroData attribute), 31

Index 34

	Precedents and Motivation
	General Design
	AstroData and Derivatives
	Data Providers
	Data Containers
	Tags
	Descriptors
	API Reference Guide
	Index

