

Astrodata Programmer’s Manual

Document ID

PIPE-USER-104_AstrodataProgManual

	1. Precedents and Motivation

	2. General Design

	3. AstroData and Derivatives
	3.1. The tags Property

	3.2. Writing an AstroData Derivative

	4. Data Providers
	4.1. Implementation Guidelines

	4.2. Registering a Data Provider to be Used with AstroData

	5. Data Containers

	6. Tags

	7. Descriptors

Appendix

	1. API Reference Guide

1. Precedents and Motivation

The Gemini Observatory has produced a number of tools for data processing.
Historically this has translated into a number of IRAF1 packages but
the lack of long-term support for IRAF, coupled with the well-known
difficulty in creating robust reduction pipelines within the IRAF
environment, led to a decision
to adopt Python as a programming tool and a new
package was born: Gemini Python. Gemini Python provided tools to load and
manipulate Gemini-produced multi-extension FITS2 (MEF) files,
along with a pipeline that
allowed the construction of reduction recipes. At the center of this package
was the AstroData subpackage, which supported the abstraction of the FITS
files.

Gemini Python reached version 1.0.1, released during November 2014. In 2015
the Science User Support Department (SUSD) was created at Gemini, which took on the
responsibility of maintaining the software reduction tools, and started
planning future steps. With improved oversight and time and thought, it became
evident that the design of Gemini Python and, specially, of AstroData, made
further development a daunting task.

In 2016 a decision was reached to overhaul Gemini Python. While the
principles behind AstroData were sound, the coding involved unnecessary
layers of abstraction and eschewed features of the Python language in favor
of its own implementation. Thus,
DRAGONS3 was born, with a new, simplified (and backward incompatible)
AstroData v2.0 (which we will refer to simply as AstroData)

This manual documents both the high level design and some implementation
details of AstroData, together with an explanation of how to extend the
package to work for new environments.

Footnotes

	1

	http://iraf.net

	2

	The Flexible Image Transport System [http://https://fits.gsfc.nasa.gov/fits_standard.html]

	3

	The Data Reduction for Astronomy from Gemini Observatory North and South [https://github.com/GeminiDRSoftware/DRAGONS] package

2. General Design

As astronomical instruments have become more complex, there
has been an increasing need for bespoke reduction packages and pipelines to
deal with the specific needs of each instrument. Despite this
complexity, many of the reduction steps can be very similar and the overall
effort could be reduced significantly by sharing code. In practice, however,
there are often issues regarding the manner in which the data are stored
internally. The purpose of AstroData is to provide a uniform interface to the data
and metadata, in a manner that is independent both of the specific instrument
and the way the data are stored on disk, thereby facilitating this code-sharing.
It is not a new astronomical data format.

One of the main features of AstroData is the use of descriptors, which
provide a level of abstraction between the metadata and the code accessing it.
Somebody using the AstroData interface who wishes to know the exposure time
of a particular astronomical observation represented by the AstroData object
ad can simply write ad.exposure_time() without needing to concern
themselves about how that value is stored internally, for example, the name
of the FITS header keyword. These are discussed further in Descriptors.

AstroData also provides a clearer representation of the relationships
between different parts of the data produced from a single astronomical
observation. Modern astronomical instruments often contain multiple
detectors that are read out separately and the multi-extension FITS (MEF)
format used by many institutions, including Gemini Observatory, handles
the raw data well. In this format, each detector’s data and metadata is
assigned to its own extension,
while there is also a separate extension (the Primary Header Unit,
or PHU) containing additional metadata that applies to the entire
observation. However, as the data are processed, more data and/or
metadata may be added whose relationship is obscured by the limitations
of the MEF format. One example is the creation and propagation of information
describing the quality and uncertainty of the scientific data: while
this was a feature of
Gemini IRAF1, the coding required to implement it was cumbersome
and AstroData uses the astropy.nddata.NDData class,
as discussed in Data Containers. This makes the relationship between these
data much clearer, and AstroData creates a syntax that makes readily apparent the
roles of other data and metadata that may be created during the reduction
process.

An AstroData object therefore consists of one or more self-contained
“extensions” (data and metadata) plus additional data and metadata that is
relevant to all the extensions. In many data reduction processes, the same
operation will be performed on each extension (e.g., subtracting an overscan
region from a CCD frame) and an axiom of AstroData is that iterating over
the extensions produces AstroData “slices” which retain knowledge of the
top-level data and metadata. Since a slice has one (or more) extensions
plus this top-level (meta)data, it too is an AstroData object and,
specifically, an instance of the same subclass as its parent.

A final feature of AstroData is the implementation of very high-level metadata.
These data, called tags, facilitate a key part of the Gemini data reduction
system, DRAGONS, by linking the astronomical data to the recipes
required to process them. They are explained in detail in Tags and the
Recipe System Programmers Manual2.

Note

AstroData and DRAGONS have been developed for the reduction of data from
Gemini Observatory, which produces data in the FITS format that is still the
most widely-used format for astronomical data. In light of this, and the
limited resources in the Science User Support Department, we have only
developed support for FITS, even though the AstroData format is designed
to be independent of the file format. In some cases, this has led to
uncertainty and internal disagreement over where precisely to engage in
abstraction and, should AstroData support a different file format, we
may find alternative solutions that result in small, but possibly
significant, changes to the API.

	1

	https://www.gemini.edu/sciops/data-and-results/processing-software/description

	2

	PIPE-USER-108_RSProgManual

3. AstroData and Derivatives

The astrodata.core.AstroData class (or simply astrodata.AstroData)
is the main interface to the package. When
opening files or creating new objects, a derivative of this class is
returned, as the AstroData
class is not intended to be used directly. It provides the logic to calculate
the tag set for an image, which is common to all data products. Aside from
that, it lacks any kind of specialized knowledge about the different
instruments that produce the FITS files. More importantly, it defines two
methods (info and load) as abstract, meaning that the class cannot be
instantiated directly: a derivative must implement those methods in order to be
useful. Such derivatives can also implement descriptors, which provide
processed metadata in a way that abstracts the user from the raw information
(e.g., the keywords in FITS headers).

AstroData does define a common interface, though. Much of it consists on
implementing semantic behavior (access to components through indices, like a
list; arithmetic using standard operators; etc), mostly by implementing
standard Python methods:

	Defines a common __init__ function, that accepts a DataProvider as its
single argument.

	Implements __deepcopy__

	Implements __iter__ to allow sequential iteration over the main set of
components (e.g., FITS science HDUs, but this depends on the DataProvider
implementation)

	Implements __getitem__ to allow data slicing (e.g., ad[2:4] returns a new
AstroData instance that contains only the third and fourth main components)

	Implements __delitem__ to allow for data removal based on index. It does
not define __setitem__, though. The basic AstroData series of classes only
allows to append new data blocks, not to replace them in one sweeping move

	Implements __iadd__, __isub__, __imul__, __idiv__, and their
not-in-place versions, based on them.

All of these provide default implementations that rely heavily on the
DataProvider capabilities. There are a few other methods. For a detailed
discussion, please refer to the API Reference Guide.

3.1. The tags Property

Additionally, and crucial to the package, AstroData offers a tags property,
that under the hood calculates textual tags that describe the object
represented by an instance, and returns a set of strings. Returning a set (as
opposed to a list, or other similar structure) is intentional, because it is
fast to compare sets, e.g., testing for membership; or calculating intersection,
etc., to figure out if a certain dataset belongs to an arbitrary category.

The implementation for the tags property is just a call to
AstroData.__process_tags(). This function implements the actual logic behind
calculating the tag set (described below). A derivative class
could redefine the algorithm, or build upon it.

3.2. Writing an AstroData Derivative

The first step when creating new AstroData derivative hierarchy would be to
create a new class that knows how to deal with some kind of specific data in a
broad sense. DRAGONS provide such a class for FITS files,
astrodata.fits.AstroDataFits, that can be used as an example for future
extensions (e.g., to support the ASDF format).

AstroDataFits implements both info and load in ways that are specific to FITS
files. It also introduces a number of FITS-specific methods and properties, e.g.:

	The properties phu and hdr, which return the primary header and a list of
headers for the science HDUs, respectively.

	A write method, which will write the data back to a FITS file

	A _matches_data static method, which is very important, involved in
guiding for the automatic class choice algorithm during data loading. We’ll
talk more about this when dealing with registering our classes.

It also defines the first few descriptors, which are common to all Gemini data:
instrument, object, and telescope, which are good examples of simple
descriptors that just map a PHU keyword without applying any conversion.

A typical AstroData programmer will extend this class (AstroDataFits), unless
introducing support for a different kind of data storage. Any of the classes
under the gemini_instruments package can be used as examples, but we’ll
describe the important bits here.

3.2.1. Create a package for it

This is not strictly necessary, but simplifies many things, as we’ll see when
talking about registration. The package layout is up to the designer, so you
can decide how to do it. For DRAGONS we’ve settled on the following
recommendation for our internal process (just to keep things familiar):

gemini_instruments
 __init__.py
 instrument_name
 __init__.py
 adclass.py
 lookup.py

Where instrument_name would be the package name (for Gemini we group all our
derivative packages under gemini_instruments, and we would import
gemini_instruments.gmos, for example). __init__.py and adclass.py would
be the only required modules under our recommended layout, with lookup.py
being there just to hold hard-coded values in a module separate from the main
logic.

adclass.py would contain the declaration of the derivative class, and
__init__.py will contain any code needed to register our class with the
AstroData system upon import.

3.2.2. Create your derivative class

This is an excerpt of a typical derivative module:

from astrodata import astro_data_tag, astro_data_descriptor, TagSet
from astrodata import AstroDataFits

from . import lookup

class AstroDataInstrument(AstroDataFits):
 __keyword_dict = dict(
 array_name = 'AMPNAME',
 array_section = 'CCDSECT'
)

 @staticmethod
 def _matches_data(source):
 return source[0].header.get('INSTRUME', '').upper() == 'MYINSTRUMENT'

 @astro_data_tag
 def _tag_instrument(self):
 return TagSet(['MYINSTRUMENT'])

 @astro_data_tag
 def _tag_image(self):
 if self.phu.get('GRATING') == 'MIRROR':
 return TagSet(['IMAGE'])

 @astro_data_tag
 def _tag_dark(self):
 if self.phu.get('OBSTYPE') == 'DARK':
 return TagSet(['DARK'], blocks=['IMAGE', 'SPECT'])

 @astro_data_descriptor
 def array_name(self):
 return self.phu.get(self._keyword_for('array_name'))

 @astro_data_descriptor
 def amp_read_area(self):
 ampname = self.array_name()
 detector_section = self.detector_section()
 return "'{}':{}".format(ampname, detector_section)

Note

An actual Gemini Facility Instrument class will derive from
gemini_instruments.AstroDataGemini, but this is irrelevant
for the example.

The class typically relies on functionality declared elsewhere, in some
ancestor, e.g., the tag set computation is defined at AstroData, and the
_keyword_for method is defined at AstroDataFits.

Some highlights:

	__keyword_dict1 defines one-to-one mappings, assigning a more
readable moniker for an HDU header keyword. The idea here is to prevent
hard-coding the names of the keywords, in the actual code. While these are
typically quite stable and not prone to change, it’s better to be safe than
sorry, and this can come in useful during instrument development, which is
the more likely source of instability. The actual value can be extracted by
calling self._keyword_for('moniker').

	_matches_data is a static method. It does not have any knowledge about the
class itself, and it does not work on an instance of the class: it’s a
member of the class just to make it easier for the AstroData registry to find
it. This method is passed some object containing cues of the internal
structure and contents of the data. This could be, for example, an instance
of HDUList, or DataProvider. Using these data, _matches_data must
return a boolean, with True meaning “I know how to handle this data”.

Note that True does not mean “I have full knowledge of the data”. It is
acceptable for more than one class to claim compatibility. For a GMOS FITS file, the
classes that will return True are: AstroDataFits (because it is a FITS
file that comply with certain minimum requirements), AstroDataGemini (the
data contains Gemini Facility common metadata), and AstroDataGmos (the
actual handler!).

But this does not mean that multiple classes can be valid “final” candidates.
If AstroData’s automatic class discovery finds more than one class claiming
matching with the data, it will start discarding them on the basis of
inheritance: any class that appears in the inheritance tree of another one is
dropped, because the more specialized one is preferred. If at some point the
algorithm cannot find more classes to drop, and there is more than one left
in the list, an exception will occur, as AstroData will have no way to choose
one over the other.

	A number of “tag methods” have been declared. Their naming is a convention,
at the end of the day (the “_tag_” prefix, and the related
“_status_” one, are just hints for the programmer): each team should
establish a convention that works for them. What is important here is to
decorate them using astro_data_tag, which earmarks the method so that
it can be discovered later, and ensures that it returns an appropriate value.

A tag method will return either a TagSet instance (which can be empty),
or None, which is the same as returning an empty TagSet2.

All these methods will be executed when looking up for tags, and it’s up
to the tag set construction algorithm (see Tags to figure out the final
result. In theory, one could provide just one big method, but this is
feasible only when the logic behind deciding the tag set is simple. The
moment that there are a few competing alternatives, with some conditions
precluding other branches, one may end up with a rather complicated dozens of
lines of logic. Let the algorithm do the heavy work for you: split the tags
as needed to keep things simple, with an easy to understand logic.

Also, keeping the individual (or related) tags in separate methods lets you
exploit the inheritance, keeping common ones at a higher level, and
redefining them as needed later on, at derived classes.

Please, refer to AstroDataGemini, AstroDataGmos, and AstroDataGnirs for
examples using most of the features.

	The AstroDataFits.load method calls the FitsLoader.load method, which
uses metadata in the FITS headers to determine how the data should be stored in
the AstroData object. In particular, the EXTNAME and EXTVER keywords
are used to assign individual FITS HDUs, using the same names (SCI, DQ,
and VAR) as Gemini-IRAF for the data, mask, and variance planes.
A SCI HDU must exist if there is another HDU with the same EXTVER, or
else an error will occur.

If the raw data do not conform to this format, the AstroDataFits.load method
can be overridden by your class, by having it call the FitsLoader.load method
with an additional parameter, extname_parser, that provides a function to
modify the header. This function will be called on each HDU before further
processing. As an example, the SOAR Adaptive Module Imager (SAMI) instrument
writes raw data as a 4-extension MEF file, with the extensions having EXTNAME
values im1, im2, etc. These need to be modified to SCI, and an
appropriate EXTVER keyword added` 3. This can be done by writing
a suitable load method for the AstroDataSami class:

@classmethod
def load(cls, source):
 def sami_parser(hdu):
 m = re.match('im(\d)', hdu.header.get('EXTNAME', ''))
 if m:
 hdu.header['EXTNAME'] = ('SCI', 'Added by AstroData')
 hdu.header['EXTVER'] = (int(m.group(1)), 'Added by AstroData')

 return cls(FitsLoader(FitsProvider).load(source, extname_parser=sami_parser))

	Descriptors will make the bulk of the class: again, the name is arbitrary,
and it should be descriptive. What may be important here is to use
astro_data_descriptor to decorate them. This is not required, because
unlike tag methods, descriptors are meant to be called explicitly by the
programmer, but they can still be earmarked (using this decorator) to be
listed when calling the descriptors property. The decorator does not
alter the descriptor input or output in any way, so it is always safe to use
it, and you probably should, unless there’s a good reason against it (e.g., if
a descriptor is deprecated and you don’t want it to show up in lookups).

More detailed information can be found in Descriptors.

3.2.3. Register your class

Finally, you need to include your class in the AstroData Registry. This
is an internal structure with a list of all the AstroData-derived classes
that we want to make available for our programs. Including the classes in this
registry is an important step, because a file should be opened using
astrodata.open or astrodata.create, which uses
the registry to identify the appropriate class (via the _matches_data
methods), instead of having the user specify it explicitly.

The version of AstroData prior to DRAGONS had an auto-discovery mechanism, that
explored the source tree looking for the relevant classes and other related
information. This forced a fixed directory structure (because the code needed
to know where to look for files), and gave the names of files and classes
semantic meaning (to know which files to look into, for example). Aside from
the rigidness of the scheme, this introduced all sort of inefficiencies,
including an unacceptably high overhead when importing the AstroData package
for the first time during execution.

In this new version of AstroData we’ve introduced a more manageable scheme,
that places the discovery responsibility on the programmer. A typical
__init__.py file on an instrument package will look like this:

__all__ = ['AstroDataMyInstrument']

from astrodata import factory
from .adclass import AstroDataMyInstrument

factory.addClass(AstroDataMyInstrument)

The call to factory.addClass is the one registering the class. This step
needs to be done before the class can be used effectively in the
AstroData system. Placing the registration step in the __init__.py file is
convenient, because importing the package will be enough!

Thus, a script making use of DRAGONS’ AstroData to manipulate GMOS data
could start like this:

import astrodata
from gemini_instruments import gmos

...

ad = astrodata.open(some_file)

The first import line is not needed, technically, because the gmos package
will import it too, anyway, but we’ll probably need the astrodata package
in the namespace anyway, and it’s always better to be explicit. Our
typical DRAGONS scripts and modules start like this, instead:

import astrodata
import gemini_instruments

gemini_instruments imports all the packages under it, making knowledge
about all Gemini instruments available for the script, which is perfect for a
multi-instrument pipeline, for example. Loading all the instrument classes is
not typically a burden on memory, though, so it’s easier for everyone to take
the more general approach. It also makes things easier on the end user, because
they won’t need to know internal details of our packages (like their naming
scheme). We suggest this “cascade import” scheme for all new source trees,
letting the user decide which level of detail they need.

As an additional step, the __init__.py file in a package may do extra
initialization. For example, for the Gemini modules, one piece of functionality
that is shared across instruments is a descriptor that translates
a filter’s name (say “u” or “FeII”) to its central wavelength (e.g.,
0.35µm, 1.644µm). As it is a rather common function for us, it is implemented
by AstroDataGemini. This class does not know about its daughter
classes, though, meaning that it cannot know about the filters offered by
their instruments. Instead, we offer a function that can be used to update the
filter → wavelength mapping in gemini_instruments.gemini.lookup so that
it is accessible by the AstroDataGemini-level descriptor. So
our gmos.__init__.py looks like this:

__all__ = ['AstroDataGmos']

from astrodata import factory
from ..gemini import addInstrumentFilterWavelengths
from .adclass import AstroDataGmos
from .lookup import filter_wavelengths

factory.addClass(AstroDataGmos)
Use the generic GMOS name for both GMOS-N and GMOS-S
addInstrumentFilterWavelengths('GMOS', filter_wavelengths)

where addInstrumentfilterWavelengths is provided by the gemini package
to perform the update in a controlled way.

We encourage package maintainers and creators to follow such explicit
initialization methods, driven by the modules that add functionality
themselves, as opposed to active discovery methods on the core code. This
favors decoupling between modules, which is generally a good idea.

Footnotes

	1

	Note that the keyword dictionary is a “private” property of the class (due to the double-underscore prefix). Each class can define its own set, which will not be replaced by derivative classes. _keyword_for is aware of this and will look up each class up the inheritance chain, in turn, when looking up for keywords.

	2

	Notice that the example functions will return only a TagSet, if appropriate. This is OK, remember that every function in Python returns a value, which will be None, implicitly, if you don’t specify otherwise.

	3

	An EXTVER keyword is not formally required as the FitsLoader.load method will assign the lowest available integer to a SCI header with no EXTVER keyword (or if its value is -1). But we wish to be able to identify the original im1 header by assigning it an EXTVER of 1, etc.

4. Data Providers

AstroData derivative classes act as a front end. Most of the heavy lifting
is actually performed by a DataProvider class. There will typically be one
data provider per kind of data structure (so far, DRAGONS offers only
astrodata.fits.FitsProvider), and possibly one data provider proxy,
used to simplify the handling of data slicing (mapping most of it operations to
a regular data provider.)

The data provider acts as a hierarchical data storage. At the top level, it
contains:

	A sequence of “extensions”, representing individual data planes and their
associated metadata, likely to
represent separate detectors or amplifiers. One can
access these extensions by index (e.g., ad[5]). Indexing starts at 0,
following Python’s convention.

	Global objects like masks or tables affecting all the extensions.

Each extension, in turn, is an instance of a Data Container, keeping important
metadata (e.g., a FITS HDU’s header) and the main data for the extension (e.g., the
data for a SCI extension, on Gemini data), along with any other associated data
(masks, variance plane, tables, etc).

astrodata.core.DataProvider is, again, an abstract class, defining the
minimum interface expected from a data provider. This interface is described in
greater detail in the API Reference Guide, but among other things, one would
need to implement:

	is_settable: AstroData exposes attributes from its data provider through
its own __getattr__ and __setattr__. When trying to set a value for
an attribute, AstroData will use this method to discover whether the
attribute can be modified.

	append: a very important method, used to add new top-level components to
the provider.

	__getitem__: which returns a sliced view1 of the
provider itself, meant to work with isolated extensions (examples of such a
view are instances of astrodata.fits.FitsProviderProxy). The view should
behave in almost every way as a normal provider.

	__len__: number of science extensions contained in this instance.

	__iadd__, __isub__, __imul__, __idiv__; used to perform
in-place operations over the data.

	data, uncertainty, mask, variance: properties used to access
certain common content. These methods generally return lists, with one
element per extension.

There are also a number of properties that are not declared as abstract, but
still need to be reimplemented if one would want any kind of proper behavior
from the class: exposed (used to determine if a certain attribute is to be
“exposed” to the user through the AstroData class), is_sliced, and
is_single. Of particular interest is this later one: is_single is a
predicate that should return True only if a data provider has been sliced
using a single index, e.g.:

>>> d1 = provider[:4]
>>> d1.is_sliced, d1.is_single
(True, False)
>>> d2 = provider[3]
>>> d2.is_sliced, d2.is_single
(True, True)

This is important for the AstroData interface. When a data provider is being
considered a “single” slice, the behavior of many methods change. For example,
we mentioned that the data property generally returns a list. If the
data provider in question is a single slice, then data would return a single
(i.e., scalar) element. This behavior is often seen also in Descriptors.
Refer always to the to documentation of a method to figure out how they behave. As
programmers, you should always include this explicitly in the documentation,
even if it’s implicit to AstroData.

4.1. Implementation Guidelines

AstroData does not impose any restriction on how to organize the data
internally, or how to deal with slicing. On slicing, we chose to use a “proxy”
class for FitsProvider. So, when sliced (through __getitem__), a
FitsProvider will return a FitsProviderProxy, which is also a
descendant of DataProvider and reproduces the interface of its “proxied”
class.

More importantly, FitsProviderProxy keeps an internal mapping of the sliced
extensions. So, we may be referring to sliced[0] and this would be mapped
to, say, nonsliced[3]. FitsProviderProxy.

Both FitsProvider and FitsProviderProxy can be studied as an example
implementation, but there is no need to follow them: please, evaluate carefully
the needs for your design, and feel free to depart from ours. As long as the
minimum interface is honored, AstroData will work as intended.

Note also that these classes were subject to heavy changes during development
and a future release cycle should see them refactored for clarity and to drop
any remnants of interfaces that were deprecated before the initial DRAGONS
public release.

As a last comment: remember that AstroData exposes its underlying
DataProvider interface up to a certain point. This can be used to
dynamically expose to the user additional attributes, dependent on the
underlying technology, or even to the instrument, if needed. This is all fine
and encouraged as long as everything is well documented, and the user
understands that certain parts of the interface may not be available when using
different observatory’s files2, for example.

4.2. Registering a Data Provider to be Used with AstroData

Once we have a new data provider class, we need to let AstroData know how to
use it, and which class will make use of it. Normally a new data provider will
be associated to a new second level AstroData class (ie. a direct descendant to
AstroData, and a sibling of AstroDataFits). This does not have to be
always the case, though: if an observatory organizes their FITS files in a way
that significantly departs from Gemini’s, then creating a separate data
provider may be justified, if it makes it easier to deal with the data.

There are no instances of this as of yet, but we’ve made a conscious effort
during the design phase to make as easy as possible to plug in new providers.
Future release of this document will address this topic.

Footnotes

	1

	For efficiency reasons, and to keep just one version of the
data. The method may decide to return a sliced copy instead, but this is
a design decision.

	2

	At the time of writing this manual, SOAR
has extended [https://github.com/soar-telescope/dragons-soar/tree/master]
DRAGONS for their own use, but they are using the core FITS capabilities as
defined by Gemini’s implementation.

5. Data Containers

A third, and very important part of the AstroData core package is the data
container. We have chosen to extend Astropy’s NDData1 with our own
requirements, particularly lazy-loading of data using by opening the FITS files
in read-only, memory-mapping mode, and exploiting the windowing capability of
PyFITS2 (using section) to reduce our memory requirements, which
becomes important when reducing data (e.g., stacking).

We document our container for completeness and for reference, but note that its
use is intimately linked to FitsProvider. If you’re implementing an alternative
data provider, you do not need to follow our design.

We’ll describe here how we depart from NDData, and how do we integrate the data
containers with the rest of the package. Please refer to NDData for the full
interface.

Our main data container is astrodata.nddata.NDAstroData. Fundamentally, it
is a derivative of astropy.nddata.NDData, plus a number of mixins to add
functionality:

class NDAstroData(NDArithmeticMixin, NDSlicingMixin, NDData):
 ...

This allows us out of the box to have proper arithmetic with error
propagation, and slicing the data with the array syntax.

Our first customization is NDAstroData.__init__. It relies mostly on the
upstream initialization, but customizes it because our class is initialized
with lazy-loaded data wrapped around a custom class
(astrodata.fits.FitsLazyLoadable) that mimics a PyFITS HDU instance just
enough to play along with NDData’s initialization code.

FitsLazyLoadable is an integral part of our memory-mapping scheme, and
among other things it will scale data on the fly, as memory-mapped FITS data
can only be read unscaled. Our NDAstroData redefines the properties data,
uncertainty, and mask, in two ways:

	To deal with the fact that our class is storing FitsLazyLoadable
instances, not arrays, as NDData would expect. This is to keep data out
of memory as long as possible.

	To replace lazy-loaded data with a real in-memory array, under certain
conditions (e.g., if the data is modified, as we won’t apply the changes to the
original file!)

Our obsession with lazy-loading and discarding data is directed to reduce
memory fragmentation as much as possible. This is a real problem that can hit
applications dealing with large arrays, particularly when using Python. Given
the choice to optimize for speed or for memory consumption, we’ve chosen the
latter, which is the more pressing issue.

Another addition of as is the variance property as a convenience for the
user. Astropy, so far, only provides a standard deviation class for storing
uncertainties and the code to propagate errors stored this way already
exists. However, our coding elsewhere is greatly simplified if we are able
to access and set the variance directly.

Lastly, we’ve added another new property, window, that can be used to
explicitly exploit the PyFITS section property, to (again) avoid loading
unneeded data to memory. This property returns an instance of NDWindowing
which, when sliced, in turn produces an instance of NDWindowingAstroData,
itself a proxy of NDAstroData. This scheme may seem complex, but it was
deemed the easiest and cleanest way to achieve the result that we were looking
for.

Note

We expect to make changes to NDAstroData in future releases. In particular,
we plan to make use of the wcs and unit attributes provided by the
NDData class and increase the use of memory-mapping by default. These
changes mostly represent increased functionality and we anticipate a high
(and possibly full) degree of backward compatibility.

Footnotes

	1

	Astropy: N-dimensional datasets [http://docs.astropy.org/en/stable/nddata]

	2

	I mention PyFITS because of familiarity and for short, but in reality
we’re using Astropy’s fits.io module.

6. Tags

We described above how to generate tags for an
AstroData derivative. In this section we’ll describe the algorithm that
generates the complete tag set out of the individual TagSet instances. The
algorithm collects all the tags in a list and then decides whether to apply
them or not following certain rules, but let’s talk about TagSet first.

TagSet is actually a standard named tuple customized to generate default
values (None) for its missing members. Its signature is:

TagSet(add=None, remove=None, blocked_by=None, blocks=None,
 if_present=None)

The most common TagSet is an additive one: TagSet(['FOO', 'BAR']).
If all you need is to add tags, then you’re done here. But the real power of
our tag generating system is that you can specify some conditions to apply a
certain TagSet, or put restrictions on others. The different arguments to
TagSet all expect a list (or some other work the in the following way):

	add: if this TagSet is selected, then add all these members to the tag
set.

	remove: if this TagSet is selected, then prevent all these members
from joining the tag set.

	blocked_by: if any of the tags listed in here exist in the tag set, then
discard this TagSet altogether.

	blocks: discard from the list of unprocessed ones any TagSet that
would add any of the tags listed here.

	if_present: process this tag only if all the tags listed in here exist in
the tag set at this point.

Note that blocked_by and blocks look like two sides of the same coin.
This is intentional: which one to use is up to the programmer, depending on
what will reduce the amount typing and/or make the logic easier (sometimes one
wants to block a bunch of other tags from a single one; sometimes one wants a
tag to be blocked by a bunch of others). Furthermore, while blocks and
blocked_by prevent the entire TagSet from being added if it contains a
tag affected by these, remove only affects the specific tag.

Now, the algorithm works like this:

	Collect all the TagSet generated by methods in the instance that are
decorated using astro_data_tag.

	Then we sort them out:

	Those that subtract tags from the tag set go first (the ones with
non-empty remove or blocks), allowing them to act early on

	Those with non-empty blocked_by are moved to the end of the list, to
ensure that other tags can be generated before them.

	Those with non-empty if_present are moved behind those with
blocked_by.

	Now that we’ve sorted the tags, process them sequentially and for each one:

	If they require other tags to be present, make sure that this is the case.
If the requirements are not met, drop the tagset. If not…

	Figure out if any other tag is blocking the tagset. This will be the
case if any of the tags to be added is in the “blocked” list, or if
any of the tags added by previous tag sets are in the blocked_by
list of the one being processed. Then…

	If all the previous hurdles have been passed, apply the changes declared
by this tag (add, remove, and/or block others).

Note that Python’s sort algorithm is stable. This means, that if two elements
are indistinguishable from the point of view of the sorting algorithm, they are
guaranteed to stay in the same relative position. To better understand how this
affects our tags, and the algorithm itself, let’s follow up with an example taken
from real code (the Gemini-generic and GMOS modules):

Simple tagset, with only a constant, additive content
@astro_data_tag
def _tag_instrument(self):
 return TagSet(['GMOS'])

Simple tagset, also with additive content. This one will
check if the frame fits the requirements to be classified
as "GMOS imaging". It returns a value conditionally:
if this is not imaging, then it will return None, which
means the algorithm will ignore the value
@astro_data_tag
def _tag_image(self):
 if self.phu.get('GRATING') == 'MIRROR':
 return TagSet(['IMAGE'])

This is a slightly more complex TagSet (but fairly simple, anyway),
inherited by all Gemini instruments.
@astro_data_tag
def _type_gcal_lamp(self):
 if self.phu.get('GCALLAMP') == 'IRhigh':
 shut = self.phu.get('GCALSHUT')
 if shut == 'OPEN':
 return TagSet(['GCAL_IR_ON', 'LAMPON'],
 blocked_by=['PROCESSED'])
 elif shut == 'CLOSED':
 return TagSet(['GCAL_IR_OFF', 'LAMPOFF'],
 blocked_by=['PROCESSED'])

This tagset is only active when we detect that the frame is
a bias. In that case we want to prevent the frame from being
classified as "imaging" or "spectroscopy", which depend on the
configuration of the instrument
@astro_data_tag
def _tag_bias(self):
 if self.phu.get('OBSTYPE') == 'BIAS':
 return TagSet(['BIAS', 'CAL'], blocks=['IMAGE', 'SPECT'])

These four simple tag methods will serve to illustrate the algorithm. Let’s pretend
that the requirements for all four of them are somehow met, meaning that we get four
TagSet instances in our list, in some random order. After step 1 in the algorithm,
then, we may have collected the following list:

[TagSet(['GMOS']),
 TagSet(['GCAL_IR_OFF', 'LAMPOFF'], blocked_by=['PROCESSED']),
 TagSet(['BIAS', 'CAL'], blocks=['IMAGE', 'SPECT']),
 TagSet(['IMAGE'])]

The algorithm then proceeds to sort them. First, it will promote the TagSet
with non-empty blocks or remove:

[TagSet(['BIAS', 'CAL'], blocks=['IMAGE', 'SPECT']),
 TagSet(['GMOS']),
 TagSet(['GCAL_IR_OFF', 'LAMPOFF'], blocked_by=['PROCESSED']),
 TagSet(['IMAGE'])]

Note that the other three TagSet stay in exactly the same order. Now the
algorithm will sort the list again, moving the ones with non-empty
blocked_by to the end:

[TagSet(['BIAS', 'CAL'], blocks=['IMAGE', 'SPECT']),
 TagSet(['GMOS']), TagSet(['IMAGE']),
 TagSet(['GCAL_IR_OFF', 'LAMPOFF'], blocked_by=['PROCESSED'])]

Note that at each step, all the instances (except the ones “being moved”) have
kept the same position relative to each other -here’s where the “stability” of
the sorting comes into play,- ensuring that each step does not affect the previous
one. Finally, there are no if_present in our example, so no more instances are
moved around.

Now the algorithm prepares three empty sets (tags, removals, and blocked),
and starts iterating over the TagSet list.

	For the first TagSet there are no blocks or removals, so we just add its
contents to the current sets: tags = {'BIAS', 'CAL'},
blocks = {'IMAGE', 'SPECT'}.

	Then comes TagSet(['GMOS']). Again, there are no removals in place, and
GMOS is not in the list of blocked tags. Thus, we just add it to the current
tag set: tags = {'BIAS', 'CAL', 'GMOS'}.

	When processing TagSet(['IMAGE']), the algorithm observes that this IMAGE
is in the blocked set, and stops processing this tag set.

	Finally, neither GCAL_IR_OFF nor LAMPOFF are in blocked, and
PROCESSED is not in tags, meaning that we can add add this tag set to
the final one.

Our result will look something like: {'BIAS', 'CAL', 'GMOS', 'GCAL_IR_OFF', 'LAMPOFF'}

7. Descriptors

Descriptors are just regular methods that translate metadata from the raw
storage (e.g., cards from FITS headers) to values useful for the user,
potentially doing some processing in between. They exist to:

	Abstract the actual organization of the metadata; e.g. AstroDataGemini
takes the detector gain from a keyword in the FITS PHU, where
AstroDataNiri overrides this to provide a hard-coded value.

More complex implementations also exist. In order to determine the gain
of a GMOS observations, AstroDataGmos uses the observation date
(provided by a descriptor) to select a particular lookup table, and
then uses the values of other descriptors to select the correct entry
in the table.

	Provide a common interface to a set of instruments. This simplifies user
training (no need to learn a different API for each instrument), and
facilitates the reuse of code for pipelines, etc.

	Also, since FITS header keywords are limited to 8 characters, for simple
keyword → value mappings, they provide a more meaningful and readable name.

Descriptors should be decorated using
astrodata.core.astro_data_descriptor. The only function of this decorator
is to ensure that the descriptor is marked as such: it does not alter its input
or output in any way. This lets the user to explore the API of an AstroData
object via the descriptors property.

Descriptors can be decorated with astrodata.core.returns_list to
eliminate the need to code some logic. Some descriptors return single values,
while some return lists, one per extension. Typically, the former are
descriptors that refer to the entire observation (and, for MEF files,
are usually extracted from metadata in the PHU, such as airmass), while
the latter are descriptors where different extensions might return different
values (and typically come from metadata in the individual HDUs, such as
gain). A list is returned even if there is only one extension in the
AstroData object, as this allows code to be written generically to
iterate over the AstroData object and the descriptor return, without
needing to know how many extensions there are. The returns_list
decorator ensures that the descriptor returns an appropriate object
(value or list), using the following rules:

	If the AstroData object is not a single slice:

	If the undecorated descriptor returns a list, an exception is raised
if the list is not the same length as the number of extensions.

	If the undecorated descriptor returns a single value, the decorator
will turn it into a list of the correct length by copying this value.

	If the AstroData object is a single slice and the undecorated
descriptor returns a list, only the first element is returned.

An example of the use of this decorator is the AstroDataNiri gain
descriptor, which reads the value from a lookup table and simply returns it.
A single value is only appropriate if the AstroData object is singly-sliced
and the decorator ensures that a list is returned otherwise.

1. API Reference Guide

1.1. Abstract Classes

These classes are the top of their respective hierarchies, and need to be
fully implemented before being used. DRAGONS ships with implementations
covering the usage of Gemini-style FITS files.

1.1.1. AstroData

	
class astrodata.core.AstroData(provider)

	Base class for the AstroData software package. It provides an interface to manipulate
astronomical data sets.

	Parameters

	provider (DataProvider) – The data that will be manipulated through the AstroData instance.

	
add(oper)

	Alias for __iadd__

	
subtract(oper)

	Alias for __isub__

	
multiply(oper)

	Alias for __imul__

	
divide(oper)

	Alias for __idiv__

	
__itruediv__(oper)

	Alias for __idiv__

	
__add__(oper)

	Implements the binary arithmetic operation + with AstroData as the left operand.

	Parameters

	oper (number or object [https://docs.python.org/3/library/functions.html#object]) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	A new AstroData instance

	
__contains__(attribute)

	Implements the ability to use the in operator with an AstroData object.
It will look up the specified attribute name within the exposed members of
the internal DataProvider object. Refer to the concrete DataProvider
implementation’s documentation to know what members are exposed.

	Parameters

	attribute (string) – An attribute name

	Returns

	

	Return type

	A boolean

	
__deepcopy__(memo)

	Returns a new instance of this class, initialized with a deep copy of the associted DataProvider

	Parameters

	memo (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – See the documentation on deepcopy for an explanation on how this works

	Returns

	

	Return type

	A deep copy of this instance

	
__delattr__(attribute)

	Implements attribute removal. If self represents a single slice, the

	
__delitem__(idx)

	Called to implement deletion of self[idx]. Supports standard Python syntax
(including negative indices).

	Parameters

	idx (integer) – This index represents the order of the element that you want to remove.

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – If idx is out of range

	
__div__(oper)

	Implements the binary arithmetic operation / with AstroData as the left operand.

	Parameters

	oper (number or object [https://docs.python.org/3/library/functions.html#object]) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	A new AstroData instance

	
__getattr__(attribute)

	Called when an attribute lookup has not found the attribute in the usual places
(not an instance attribute, and not in the class tree for self).

This is implemented to provide access to objects exposed by the DataProvider

	Parameters

	attribute (string) – The attribute’s name

	Raises

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If the attribute could not be found/computed.

	
__getitem__(slicing)

	Returns a sliced view of the instance. It supports the standard Python indexing
syntax.

	Parameters

	slice (int, slice) – An integer or an instance of a Python standard slice object

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If trying to slice an object when it doesn’t make sense (eg. slicing a single
slice)

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If slice does not belong to one of the recognized types

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – If an index is out of range

Examples

>>> single = ad[0]
>>> multiple = ad[:5]

	
__iadd__(oper)

	Implements the augmented arithmetic assignment +=.

	Parameters

	oper (number or object [https://docs.python.org/3/library/functions.html#object]) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	self

	
__idiv__(oper)

	Implements the augmented arithmetic assignment /=.

	Parameters

	oper (number or other) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	self

	
__imul__(oper)

	Implements the augmented arithmetic assignment *=.

	Parameters

	oper (number or object [https://docs.python.org/3/library/functions.html#object]) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	self

	
__init__(provider)

	Initialize self. See help(type(self)) for accurate signature.

	
__isub__(oper)

	Implements the augmented arithmetic assignment -=.

	Parameters

	oper (number or object [https://docs.python.org/3/library/functions.html#object]) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	self

	
__len__()

	Number of independent extensions stored by the DataProvider

	Returns

	

	Return type

	A non-negative integer.

	
__mul__(oper)

	Implements the binary arithmetic operation * with AstroData as the left operand.

	Parameters

	oper (number or object [https://docs.python.org/3/library/functions.html#object]) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	A new AstroData instance

	
__radd__(oper)

	Implements the binary arithmetic operation + with AstroData as the left operand.

	Parameters

	oper (number or object [https://docs.python.org/3/library/functions.html#object]) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	A new AstroData instance

	
__rmul__(oper)

	Implements the binary arithmetic operation * with AstroData as the left operand.

	Parameters

	oper (number or object [https://docs.python.org/3/library/functions.html#object]) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	A new AstroData instance

	
__setattr__(attribute, value)

	Called when an attribute assignment is attempted, instead of the normal mechanism.
This method will check first with the DataProvider: if the DP says it will contain
this attribute, or that it will accept it for setting, then the value will be stored
at the DP level. Otherwise, the regular attribute assignment mechanisme takes over
and the value will be store as an instance attribute of self.

	Parameters

	
	attribute (string) – The attribute’s name

	value (object [https://docs.python.org/3/library/functions.html#object]) – The value to be assigned to the attribute

	Returns

	
	If the value is passed to the DataProvider, and it is not of an acceptable type,

	a ValueError (or other exception) may be rised. Please, check the appropriate

	documentation for this.

	
__sub__(oper)

	Implements the binary arithmetic operation - with AstroData as the left operand.

	Parameters

	oper (number or object [https://docs.python.org/3/library/functions.html#object]) – The operand to be added to this instance. The accepted types depend on the
DataProvider

	Returns

	

	Return type

	A new AstroData instance

	
__weakref__

	list of weak references to the object (if defined)

	
append(extension, name=None, *args, **kw)

	Adds a new top-level extension to the provider. Please, read the the concrete
DataProvider documentation that is being used to know the exact behavior and
additional accepted arguments.

	Parameters

	
	extension (array, Table, or other) – The contents for the new extension. Usually the underlying DataProvider
will understand how to deal with regular NumPy arrays and with AstroData
Table instances, but it may also accept other types.

	name (string, optional) – A DataProvider will usually require a name for extensions. If the name
cannot be derived from the metadata associated to extension, you will
have to provider one.

	args (optional) – The DataProvider may accept additional arguments. Please, refer to its
documentation.

	kw (optional) – The DataProvider may accept additional arguments. Please, refer to its
documentation.

	Returns

	
	The instance that has been added internally (potentially *not the same that*

	was passed as *extension)*

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Will be raised if the DataProvider doesn’t know how to deal with the
data that has been passed.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised if the extension is of a proper type, but its value is illegal
somehow.

	
descriptors

	Returns a sequence of names for the methods that have been
decorated as descriptors.

	Returns

	

	Return type

	A tuple of str

	
info()

	Prints out information about the contents of this instance. Implemented
by the derived classes.

	
load(source)

	Class method that returns an instance of this same class, properly initialized
with a DataProvider that can deal with the object passed as source

This method is abstract and has to be implemented by derived classes.

	
operate(operator, *args, **kwargs)

	Applies a function to the main data array on each extension, replacing
the data with the result. The data will be passed as the first argument
to the function.

It will be applied to the mask and variance of each extension, too, if
they exist.

This is a convenience method, which is equivalent to:

	for ext in ad:

	ad.ext.data = operator(ad.ext.data, *args, **kwargs)
ad.ext.mask = operator(ad.ext.mask, *args, **kwargs) if ad.ext.mask is not None else None
ad.ext.variance = operator(ad.ext.variance, *args, **kwargs) if ad.ext.variance is not None else None

with the additional advantage that it will work on single slices, too.

	Parameters

	
	operator (function, or bound method) – A function that takes an array (and, maybe, other arguments)
and returns an array

	args (optional) – Additional arguments to be passed positionally to the operator

	kwargs (optional) – Additional arguments to be passed by name to the operator

Examples

>>> import numpy as np
>>> ad.operate(np.squeeze)

	
reset(data, mask=-23, variance=-23, check=True)

	Sets the .data, and optionally .mask and .variance attributes of a
single-extension AstroData slice. This function will optionally
check whether these attributes have the same shape.

	Parameters

	
	data (ndarray) – The array to assign to the .data attribute (“SCI”)

	mask (ndarray, optional) – The array to assign to the .mask attribute (“DQ”)

	variance (ndarray, optional) – The array to assign to the .variance attribute (“VAR”)

	check (bool [https://docs.python.org/3/library/functions.html#bool]) – If set, then the function will check that the mask and variance
arrays have the same shape as the data array

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if an attempt is made to set the .mask or .variance attributes
with something other than an array

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the .mask or .variance attributes don’t have the same shape as
.data, OR if this is called on an AD instance that isn’t a single
extension slice

	
tags

	A set of strings that represent the tags defining this instance

1.1.2. DataProvider

	
class astrodata.core.DataProvider

	Abstract class describing the minimal interface that DataProvider derivative
classes need to implement.

	
__getitem__(slice)

	Returns a sliced view of the provider. It supports the standard Python indexing
syntax, including negative indices.

	Parameters

	slice (int, slice) – An integer or an instance of a Python standard slice object

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If trying to slice an object when it doesn’t make sense (eg. slicing a single
slice)

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If slice does not belong to one of the recognized types

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – If an index is out of range

Examples

>>> single = provider[0]
>>> multiple = provider[:5]

	
__iadd__(oper)

	This method should attempt to do an in-place (modifying self) addition of each
internal science object and the oper.

	Parameters

	oper (object [https://docs.python.org/3/library/functions.html#object]) – An operand to add to the internal science objects. The actual accepted type
depends on the implementation

	Returns

	
	Generally, it should return self. The implementations may decide to return

	something else instead.

	
__idiv__(oper)

	This method should attempt to do an in-place (modifying self) division of each
internal science object and the oper.

	Parameters

	oper (object [https://docs.python.org/3/library/functions.html#object]) – An operand to divide the internal science objects by. The actual accepted type
depends on the implementation

	Returns

	
	Generally, it should return self. The implementations may decide to return

	something else instead.

	
__imul__(oper)

	This method should attempt to do an in-place (modifying self) multiplication of each
internal science object and the oper.

	Parameters

	oper (object [https://docs.python.org/3/library/functions.html#object]) – An operand to multiply the internal science objects by. The actual accepted type
depends on the implementation

	Returns

	
	Generally, it should return self. The implementations may decide to return

	something else instead.

	
__isub__(oper)

	This method should attempt to do an in-place (modifying self) subtraction of each
internal science object and the oper.

	Parameters

	oper (object [https://docs.python.org/3/library/functions.html#object]) – An operand to subtract from the internal science objects. The actual accepted type
depends on the implementation

	Returns

	
	Generally, it should return self. The implementations may decide to return

	something else instead.

	
__len__()

	“Length” of the object. This method will typically return the number of science
objects contained by this provider, but this may change depending on the
implementation.

	Returns

	

	Return type

	An integer

	
__weakref__

	list of weak references to the object (if defined)

	
append(ext, name=None)

	Adds a new component to the provider. Objects appended to a single slice will
actually be made hierarchically dependent of the science object represented by
that slice. If appended to the provider as a whole, the new member will be
independent (eg. global table, new science object).

	Parameters

	
	ext (array, NDData, Table, etc) – The component to be added. The exact accepted types depend on the class
implementing this interface. Implementations specific to certain data formats
may accept specialized types (eg. a FITS provider will accept an ImageHDU
and extract the array out of it)

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A name that may be used to access the new object, as an attribute of the
provider. The name is typically ignored for top-level (global) objects,
and required for the others.

It can consist in a combination of numbers and letters, with the restriction
that the letters have to be all capital, and the first character cannot be
a number (“[A-Z][A-Z0-9]*”).

	Returns

	
	The same object, or a new one, if it was necessary to convert it to a more

	suitable format for internal use.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If adding the object in an invalid situation (eg. name is None when
adding to a single slice)

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If adding an object that is not acceptable

	
data

	A list of the the arrays (or single array, if this is a single slice) corresponding
to the science data attached to each extension, in loading/appending order.

	
exposed

	A collection of strings with the names of objects that can be accessed directly
by name as attributes of this instance, and that are not part of its standard
interface (ie. data objects that have been added dynamically).

Examples

>>> ad[0].exposed
set(['OBJMASK', 'OBJCAT'])
>>> ad[0].OBJCAT
...

	
is_settable(attribute)

	Predicate that can be used to figure out if certain attribute of the
DataProvider is meant to be modified by an external object.

This is used mostly by AstroData, which acts as a proxy exposing
attributes of its assigned provider, to decide if it should set a value
on the provider or on itself.

	Parameters

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	

	Return type

	A boolean

	
is_single

	If this data provider represents a single slice out of a whole dataset,
return True. Otherwise, return False.

	Returns

	

	Return type

	A boolean

	
is_sliced

	If this data provider instance represents the whole dataset, return
False. If it represents a slice out of the whole, return True.

	Returns

	

	Return type

	A boolean

	
mask

	A list of the mask arrays (or a single array, if this is a single slice) attached to the
science data, for each extension, in loading/appending order.

For objects that miss a mask, None will be provided instead.

	
uncertainty

	A list of the uncertainty objects (or a single object, if this is a single slice)
attached to the science data, for each extension, in loading/appending order.

The objects are instances of AstroPy’s NDUncertainty, or None where no information
is available.

See also

	variance

	The actual array supporting the uncertainty object

	
variance

	A list of the variance arrays (or a single array, if this is a single slice) attached to
the science data, for each extension, in loading/appending order.

For objects that miss uncertainty information, None will be provided instead.

See also

	uncertainty

	The NDUncertainty object used under the hood to propagate uncertainty when

operating

1.2. TagSet

	
class astrodata.core.TagSet(add=None, remove=None, blocked_by=None, blocks=None, if_present=None)

	Named tuple that is used by tag methods to return which actions should be
performed on a tag set. All the attributes are optional, and any combination
of them can be used, allowing to create complex tag structures. Read the
documentation on the tag-generating algorithm if you want to better understand
the interactions.

The simplest TagSet, though, tends to just add tags to the global set.

It can be initialized by position, like any other tuple (the order of the
arguments is the one in which the attributes are listed below). It can
also be initialized by name.

	
add

	Tags to be added to the global set

	Type

	set of str, or None [https://docs.python.org/3/library/constants.html#None]

	
remove

	Tags to be removed from the global set

	Type

	set of str, or None [https://docs.python.org/3/library/constants.html#None]

	
blocked_by

	Tags that will prevent this TagSet from being applied

	Type

	set of str, or None [https://docs.python.org/3/library/constants.html#None]

	
blocks

	Other TagSets containing these won’t be applied

	Type

	set of str, or None [https://docs.python.org/3/library/constants.html#None]

	
if_present

	This TagSet will be applied only all of these tags are present

	Type

	set of str, or None [https://docs.python.org/3/library/constants.html#None]

Examples

>>> TagSet()
TagSet(add=set([]), remove=set([]), blocked_by=set([]), blocks=set([]), if_present=set([]))
>>> TagSet(set(['BIAS', 'CAL']))
TagSet(add=set(['BIAS', 'CAL']), remove=set([]), blocked_by=set([]), blocks=set([]), if_present=set([]))
>>> TagSet(remove=set(['BIAS', 'CAL']))
TagSet(add=set([]), remove=set(['BIAS', 'CAL']), blocked_by=set([]), blocks=set([]), if_present=set([]))

1.3. NDAstroData

	
class astrodata.nddata.NDAstroData(data, uncertainty=None, mask=None, wcs=None, meta=None, unit=None, copy=False, window=None)

	Implements NDData with all Mixins, plus some AstroData specifics.

This class implements an NDData-like container that supports reading and
writing as implemented in the astropy.io.registry and also slicing
(indexing) and simple arithmetics (add, subtract, divide and multiply).

A very important difference between NDAstroData and NDData is that
the former attempts to load all its data lazily. There are also some important
differences in the interface (eg. .data lets you reset its contents after
initialization).

Documentation is provided where our class differs.

See also

NDData, NDArithmeticMixin, NDSlicingMixin

Examples

The mixins allow operation that are not possible with NDData or
NDDataBase, i.e. simple arithmetics:

>>> from astropy.nddata import NDAstroData, StdDevUncertainty
>>> import numpy as np

>>> data = np.ones((3,3), dtype=np.float)
>>> ndd1 = NDAstroData(data, uncertainty=StdDevUncertainty(data))
>>> ndd2 = NDAstroData(data, uncertainty=StdDevUncertainty(data))

>>> ndd3 = ndd1.add(ndd2)
>>> ndd3.data
array([[2., 2., 2.],
 [2., 2., 2.],
 [2., 2., 2.]])
>>> ndd3.uncertainty.array
array([[1.41421356, 1.41421356, 1.41421356],
 [1.41421356, 1.41421356, 1.41421356],
 [1.41421356, 1.41421356, 1.41421356]])

see NDArithmeticMixin for a complete list of all supported arithmetic
operations.

But also slicing (indexing) is possible:

>>> ndd4 = ndd3[1,:]
>>> ndd4.data
array([2., 2., 2.])
>>> ndd4.uncertainty.array
array([1.41421356, 1.41421356, 1.41421356])

See NDSlicingMixin for a description how slicing works (which attributes)
are sliced.

	
data

	An array representing the raw data stored in this instance.
It implements a setter.

	
set_section(section, input)

	Sets only a section of the data. This method is meant to prevent
fragmentation in the Python heap, by reusing the internal structures
instead of replacing them with new ones.

	Parameters

	
	section (slice) – The area that will be replaced

	input (NDData-like instance) – This object needs to implement at least data, uncertainty,
and mask. Their entire contents will replace the data in the
area defined by section.

Examples

>>> sec = NDData(np.zeros((100,100)))
>>> ad[0].nddata.set_section((slice(None,100),slice(None,100)), sec)

	
variance

	A convenience property to access the contents of uncertainty,
squared (as the uncertainty data is stored as standard deviation).

	
window

	Interface to access a section of the data, using lazy access whenever possible.

	Returns

	
	An instance of NDWindowing, which provides __getitem__, to allow the use

	of square brackets when specifying the window. Ultimately, an

	NDWindowingAstrodata instance is returned

Examples

>>> ad[0].nddata.window[100:200, 100:200]
<NDWindowingAstrodata>

	
class astrodata.nddata.NDWindowingAstroData(target, window)

	Allows “windowed” access to some properties of an NDAstroData instance.
In particular, data, uncertainty, variance, and mask return
clipped data.

1.4. Decorators and other helper functions

	
astrodata.core.astro_data_descriptor(fn)

	Decorator that will mark a class method as an AstroData descriptor.
Useful to produce list of descriptors, for example.

If used in combination with other decorators, this one must be the
one on the top (ie. the last one applying). It doesn’t modify the
method in any other way.

	Parameters

	fn (method) – The method to be decorated

	Returns

	

	Return type

	The tagged method (not a wrapper)

	
astrodata.core.astro_data_tag(fn)

	Decorator that marks methods of an AstroData derived class as part of the
tag-producing system.

It wraps the method around a function that will ensure a consistent return
value: the wrapped method can return any sequence of sequences of strings,
and they will be converted to a TagSet. If the wrapped method
returns None, it will be turned into an empty TagSet.

	Parameters

	fn (method) – The method to be decorated

	Returns

	

	Return type

	A wrapper function

	
astrodata.core.returns_list(fn)

	Decorator to ensure that descriptors that should return a list (of one
value per extension) only returns single values when operating on
single slices; and vice versa.

This is a common case, and you can use the decorator to simplify the
logic of your descriptors.

	Parameters

	fn (method) – The method to be decorated

	Returns

	

	Return type

	A function

Index

 _
 | A
 | B
 | D
 | E
 | I
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__add__() (astrodata.core.AstroData method)

 	__contains__() (astrodata.core.AstroData method)

 	__deepcopy__() (astrodata.core.AstroData method)

 	__delattr__() (astrodata.core.AstroData method)

 	__delitem__() (astrodata.core.AstroData method)

 	__div__() (astrodata.core.AstroData method)

 	__getattr__() (astrodata.core.AstroData method)

 	__getitem__() (astrodata.core.AstroData method)

 	(astrodata.core.DataProvider method)

 	__iadd__() (astrodata.core.AstroData method)

 	(astrodata.core.DataProvider method)

 	__idiv__() (astrodata.core.AstroData method)

 	(astrodata.core.DataProvider method)

 	__imul__() (astrodata.core.AstroData method)

 	(astrodata.core.DataProvider method)

 	
 	__init__() (astrodata.core.AstroData method)

 	__isub__() (astrodata.core.AstroData method)

 	(astrodata.core.DataProvider method)

 	__itruediv__() (astrodata.core.AstroData method)

 	__len__() (astrodata.core.AstroData method)

 	(astrodata.core.DataProvider method)

 	__mul__() (astrodata.core.AstroData method)

 	__radd__() (astrodata.core.AstroData method)

 	__rmul__() (astrodata.core.AstroData method)

 	__setattr__() (astrodata.core.AstroData method)

 	__sub__() (astrodata.core.AstroData method)

 	__weakref__ (astrodata.core.AstroData attribute)

 	(astrodata.core.DataProvider attribute)

A

 	
 	add (astrodata.core.TagSet attribute)

 	add() (astrodata.core.AstroData method)

 	append() (astrodata.core.AstroData method)

 	(astrodata.core.DataProvider method)

 	
 	astro_data_descriptor() (in module astrodata.core)

 	astro_data_tag() (in module astrodata.core)

 	AstroData (class in astrodata.core)

B

 	
 	blocked_by (astrodata.core.TagSet attribute)

 	
 	blocks (astrodata.core.TagSet attribute)

D

 	
 	data (astrodata.core.DataProvider attribute)

 	(astrodata.nddata.NDAstroData attribute)

 	
 	DataProvider (class in astrodata.core)

 	descriptors (astrodata.core.AstroData attribute)

 	divide() (astrodata.core.AstroData method)

E

 	
 	exposed (astrodata.core.DataProvider attribute)

I

 	
 	if_present (astrodata.core.TagSet attribute)

 	info() (astrodata.core.AstroData method)

 	
 	is_settable() (astrodata.core.DataProvider method)

 	is_single (astrodata.core.DataProvider attribute)

 	is_sliced (astrodata.core.DataProvider attribute)

L

 	
 	load() (astrodata.core.AstroData method)

M

 	
 	mask (astrodata.core.DataProvider attribute)

 	
 	multiply() (astrodata.core.AstroData method)

N

 	
 	NDAstroData (class in astrodata.nddata)

 	
 	NDWindowingAstroData (class in astrodata.nddata)

O

 	
 	operate() (astrodata.core.AstroData method)

R

 	
 	remove (astrodata.core.TagSet attribute)

 	
 	reset() (astrodata.core.AstroData method)

 	returns_list() (in module astrodata.core)

S

 	
 	set_section() (astrodata.nddata.NDAstroData method)

 	
 	subtract() (astrodata.core.AstroData method)

T

 	
 	tags (astrodata.core.AstroData attribute)

 	
 	TagSet (class in astrodata.core)

U

 	
 	uncertainty (astrodata.core.DataProvider attribute)

V

 	
 	variance (astrodata.core.DataProvider attribute)

 	(astrodata.nddata.NDAstroData attribute)

W

 	
 	window (astrodata.nddata.NDAstroData attribute)

Astrodata User Manual

Document ID

PIPE-USER-104_AstrodataProgManual

	1. Precedents and Motivation

	2. General Design

	3. AstroData and Derivatives
	3.1. The tags Property

	3.2. Writing an AstroData Derivative

	4. Data Providers
	4.1. Implementation Guidelines

	4.2. Registering a Data Provider to be Used with AstroData

	5. Data Containers

	6. Tags

	7. Descriptors

	1. API Reference Guide

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Astrodata Programmer’s Manual

 		
 Precedents and Motivation

 		
 General Design

 		
 AstroData and Derivatives

 		
 The tags Property

 		
 Writing an AstroData Derivative

 		
 Create a package for it

 		
 Create your derivative class

 		
 Register your class

 		
 Data Providers

 		
 Implementation Guidelines

 		
 Registering a Data Provider to be Used with AstroData

 		
 Data Containers

 		
 Tags

 		
 Descriptors

 		
 API Reference Guide

 		
 Abstract Classes

 		
 AstroData

 		
 DataProvider

 		
 TagSet

 		
 NDAstroData

 		
 Decorators and other helper functions

_static/up-pressed.png

_static/up.png

