

Recipe System User Manual

Document ID

PIPE-USER-109_RSUserManual

Table of Contents

	1. Introduction
	1.1. Overview

	1.2. Further Information

	2. Installation
	2.1. Install Anaconda

	2.2. Install DRAGONS

	2.3. Configure DRAGONS

	2.4. Test the installation

	3. Definitions
	3.1. AstroData Tags

	3.2. Mode

	3.3. Recipe

	3.4. Recipe Library

	3.5. Primitive

	3.6. Primitive Set

	4. The reduce command
	4.1. Introduction

	4.2. Usage Examples

	4.3. Command Line Options and Switches

	4.4. The @file Facility

	5. The Reduce Class
	5.1. Using Reduce

	5.2. Public Attributes to Reduce

	6. Local Calibration Database
	6.1. Configuring caldb

	6.2. Using caldb on the Command Line

	6.3. Using the caldb API

	7. Supplemental tools
	7.1. dataselect

	7.2. showd

	7.3. showrecipes

	7.4. showpars

	7.5. typewalk

	8. Acknowledgments

Appendices

	1. Full Command Line Example

	2. Full API Example

	3. Glossary

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction

1.1. Overview

The DRAGONS Recipe System is Gemini Observatory’s data processing
automation platform. The Recipe System is designed to accommodate both
stepwise, interactive data processing, and automated data reduction pipelines.

The Recipe System inspect the inputs and automatically associates the recipes
and primitives most appropriate for those inputs. A primitive is a step in
a reduction, for example biasCorrect. A recipe is a sequence of
primitives. For the Gemini instruments, the collections of primitives and
recipes are found in the geminidr package. It is possible to specify
a different data reduction package.

The Recipe System relies on the Astrodata facility (astrodata package) to
identify the input data and match them to the recipes and primitives. The
Astrodata tags are the keys to the mapping. For the Gemini instruments,
the Astrodata configurations are found in the gemini_instruments package.
Again, it is possible to specify a different Astrodata configuration package.

The reduce command and programmatic access to the Reduce class are the
principle ways DRAGONS users can employ the Recipe System to process and reduce
their data. This document discusses a variety of examples of the reduce
command line and the programmatic interface on the Reduce class.

The reduce command, and its programmatic interface, support options that
allow users to select and “tune” input parameters data processing steps.
Without any command line options or adjustment of the Reduce class
option attributes, the reduction uses default recipes and default input
parameters to the primitives. In the geminidr package, which support
the Gemini instruments, the default recipes and primitive parametres have been
optimized to give good results in most cases.

A typical reduce command can look deceptively simple. Without knowing the
content of the data file, you can simply run reduce on the data and the
Recipe System automatically selects the best recipe and primtives based upon
the data classifications. For example, a call like this one can be all that
is needed:

$ reduce S20161025S0111.fits
 --- reduce, v2.0 (beta) ---
All submitted files appear valid
===
RECIPE: reduce
===
 PRIMITIVE: prepare

 ...
 ...

1.2. Further Information

Details and information on developing for the Recipe System, and about the
astrodata package are available in companion manuals. We invite the reader
interested in those topics to refer to the topical documentation.

	Recipe System Programmers Manual

	Astrodata User Manual

	Astrodata Programmer Manual

2. Installation

The Recipe System is distributed as part of DRAGONS. DRAGONS is available
as a conda package. The installation instructions below will install all
the necessary dependencies.

The use of the bash shell is required by Anaconda.

2.1. Install Anaconda

If you already have Anaconda installed, you can skip this step and go to
the Install DRAGONS section below. If not, then your
first step is to get and install Anaconda. You can download it at:

https://www.anaconda.com/distribution/#download-section

Choose the version of Python that suits your other Python needs. DRAGONS is
compatible with Python 3.7. We recommend that you install the standard
Python 3 version of Anaconda, the specific Python version can be adjusted
later.

If you have downloaded the graphical installer, follow the graphical installer
instructions. Install in your home directory. It should be the default.

If you have downloaded the command-line installer, type the following in a
terminal, replacing the .sh file name to the name of the file you have
downloaded. The /bin/bash -l line is not needed if you are already
using bash. The command-line installer allows for more customization of the
installation.

$ /bin/bash -l
$ chmod a+x Anaconda3-2019.03-MacOSX-x86_64.sh
$./Anaconda3-2019.03-MacOSX-x86_64.sh

($ indicates the terminal prompt.)

Note

To prevent the Anaconda “base” environment from loading
automatically, do:

$ conda config --set auto_activate_base false

2.2. Install DRAGONS

Anaconda requires the use of the bash shell. tcsh or csh will not
work. If you are using (t)csh, your first step is:

$ /bin/bash -l

Make sure that ~/anaconda3/bin/activate is in your PATH by doing:

$ which activate

The Anaconda installer should have added conda configurations to the
~/.bash_profile for you. If activate is not found, try:

$ source ~/.bash_profile

If activate is still not found, you might have to add
export PATH=~/anaconda3/bin:$PATH to your ~/.bash_profile using your
favorite text editor, and run the source command above again.

Note

Sometimes the Anaconda installer will install the software in
~/anaconda3 instead of simply ~/anaconda. Just
check in your home directory which one of the tow possibilities was used.

The code Anaconda adds to the .bash_profile will automatically activate
anaconda. To activate or deactivate Anaconda manually:

$ conda activate
$ conda deactivate

Now that Anaconda works, we add the needed astronomy software. Add the
Astroconda channel and the Gemini channel. Those channels host
the conda astronomy packages.

$ conda config --add channels http://ssb.stsci.edu/astroconda
$ conda config --add channels http://astroconda.gemini.edu/public

The next step is to create a virtual environment and install the DRAGONS
software and its dependencies in it. The name of the environment can be
anything you like. Here we use “dragons” as the name and we install
Python 3.7.

$ conda create -n dragons python=3.7 dragons

Or, to include things like ds9

$ conda create -n dragons python=3.7 dragons stsci

Most users will probably want to install the extra astronomy tools that come
with the stsci conda package.

To use this environment, activate it:

$ conda activate dragons

You will need to activate the environment whenever you start a new shell.
If you are planning to use it all the time, you might want to add the
command to your .bash_profile, after the “conda init” block.

Note

As a side note, if you are going to use PyRAF regularly, for example to
reduce Gemini data not yet supported in DRAGONS, you should be installing
Python 2.7 as well in a different environment, along with the gemini,
iraf-all and pyraf-all conda packages. Do not use PyRAF from the
Python 3 environment; PyRAF is very slow under Python 3.

$ conda create -n geminiconda python=2.7 iraf-all pyraf-all stsci gemini

DRAGONS and the Recipe System do not need IRAF, PyRAF. Only DRAGONS v2
is compatible with Python 2.7. See the Gemini website for information on
how to configure IRAF (http://www.gemini.edu/node/11823)

2.3. Configure DRAGONS

DRAGONS requires a configuration file located in ~/.geminidr/:

$ cd ~
$ mkdir .geminidr
$ cd .geminidr
$ touch rsys.cfg

Open rsys.cfg with your favority editor and add these lines:

[calibs]
standalone = True
database_dir = ~/.geminidr/

Then configure ds9 buffer configurations:

$ cd ~
$ cp $CONDA_PREFIX/lib/python3.7/site-packages/gempy/numdisplay/imtoolrc ~/.imtoolrc
$ vi .bash_profile # or use your favorite editor

 Add this line to the .bash_profile:
 export IMTOOLRC=~/.imtoolrc

2.4. Test the installation

Start up the Python interpreter and import astrodata and the
gemini_instruments packages:

$ python
>>> import astrodata
>>> import gemini_instruments

If the imports are successful, i.e. no errors show up, exit Python (Ctrl-D).

Now test that reduce runs. There may be some delay as package modules
are compiled and loaded:

$ reduce --help

This will print the reduce help to the screen.

If you have Gemini FITS files available, you can test that the Recipe System
is functioning as expected as follow (replace the file name with the name
of your file):

$ reduce N20180106S0700.fits -r prepare

If all is well, you will see something like:

 --- reduce, v3.0.0 ---
All submitted files appear valid
Found 'prepare' as a primitive.
==
RECIPE: prepare
==
PRIMITIVE: prepare

 PRIMITIVE: validateData

 .
 PRIMITIVE: standardizeStructure

 .
 PRIMITIVE: standardizeHeaders

 PRIMITIVE: standardizeObservatoryHeaders
 --
 Updating keywords that are common to all Gemini data
 .
 PRIMITIVE: standardizeInstrumentHeaders

 Updating keywords that are specific to NIRI
 .
 .
.
Wrote N20180106S0700_prepared.fits in output directory

reduce completed successfully.

3. Definitions

When a reduction is launched with reduce (command line) or Reduce
(Python class), the Recipe System will identify the nature of the inputs
using the AstroData tags, and then start searching for the most
appropriate, or the requested, recipe and
primitives.

The Recipe System will search the active data reduction package (geminidr
or as specified by the --drpkg option) for recipe libraries
and primitive sets matching the inputs. The
recipe library search is limited in scope by the
mode option.

Once everything has been found, the default or specified recipe
from the selected recipe library is given the
primitive set as input. The recipe is run and
the sequence of primitive calls is executed.

Below, we discuss each of the terms in bold italics from the
execution summary above: “AstroData tags”, “mode”, “recipe”, “recipe library”,
“primitive”, “primitive set”.

3.1. AstroData Tags

The AstroData Tags are data identification tags. When a file is opened
with AstroData, the software loads the AstroData configuration files and
attempts to identify the data.

The tags associated with the dataset are compared to tags included in
recipes and in primitive classes. The best match wins the selection process.

For Gemini instruments, the AstroData configurations are found in the gemini_instruments package. This is set as the default. Which
configuration package to use can be configured on the reduce command line
or in the Reduce class.

More information on AstroData tags can be found in the Astrodata User Manual.

3.2. Mode

The mode defines the type of reduction one wants to perform:
science quality (“sq”), quick look reduction (“ql”), or quality assessment
(“qa”). Each mode defines its own set of recipe libraries. The mode is
switched through command line flags or the Reduce class mode attribute.

If not specified, the default is science quality, “sq”. Currently, only
science quality, quick look, and quality assessment are supported. Users
cannot select other modes.

Recipe libraries of the same name but assigned different mode are often very
different from each other since the products are expected to be different.

The quality assessment mode, “qa”, is used mostly at the Observatory, at night
to measure sky condition metrics and provide a visual assessment of the data. It
does not require calibrations since we might not have all the calibrations needed
at the time that the data was obtained.

The quick look mode, “ql”, is intended for quick, close to but not necessarily
science quality reduction. The objective as the name entails being to do a
quick and automatic reduction for quick scientific and technical evaluation
of the data. This mode does not require calibrations either, but both QA and QL
modes can use calibrations if they are found.

The science quality mode, “sq”, the default mode, is to be used in most cases.
The recipes in “sq” mode contain all the steps required to fully reduce data
without cutting corners. Some steps can be lengthy, some steps might offer
an optional interactive interface for optimization. This mode requires all
the calibrations and will return an error in case some of the is not found.

It is important to notice that a calibration processed with a mode cannot be
used in another mode. So make sure you are reducing all your data using the same
mode.

3.3. Recipe

A recipe is a sequence of data processing instructions. Technically, it is a
Python function that calls a sequence of primitives, each primitive
nominally designed to do one specific transformation or service request.

Below is what a recipe can look like. This recipe performs the standardization
and corrections needed to convert the raw input science images into a stacked
image. The argument, p, to the reduce recipe is the primitive set;
the recipe can call any primitives from that set.

def reduce(p):
 p.prepare()
 p.addDQ()
 p.addVAR(read_noise=True)
 p.overscanCorrect()
 p.biasCorrect()
 p.ADUToElectrons()
 p.addVAR(poisson_noise=True)
 p.flatCorrect()
 p.mosaicDetectors()
 p.makeFringe()
 p.fringeCorrect()
 p.alignAndStack()
 p.writeOutputs()
 return

The guiding principle when building a recipe is to keep it human readable and
scientifically oriented.

3.4. Recipe Library

A recipe library is a collection of recipes that applies to a specific
type of data. The AstroData tags are used to match a recipe library to
a dataset. A recipe library is implemented as Python module. There can
be many recipes but only one is set as the default. It is however possible
for the user to override the default and call any recipe within the library.

3.5. Primitive

A primitive is a data reduction step involving a transformation of the data or
providing a service. By convention, the primitives are named to convey the
scientific meaning of the transformation. For example biasCorrect will
remove the bias signal from the input data.

A primitive is always a member of a primitive set. It is the primitive set
that gets matched to the data by the Recipe System, not the individual
primitives.

Technically, a primitive is a method of a primitive class. A primitive
class gets associated with the input dataset by matching the AstroData tags.
Once associated, all the primitives in that class, locally defined or inherited,
are available to reduce that dataset. We refer to that collection of
primitives as a “primitive set”.

3.6. Primitive Set

A primitive set is a collection of primitives that are applicable to the
input dataset. The association of the primitive set to the data is done by
matching AstroData tags. It is a primitive set that gets passed to the recipe.
The recipe can use any primitive within that set.

Technically, a primitive set is a class that can have inherited from other more
general classes. In geminidr, there is a large inheritance tree of
primitive classes from very generic to very specific. For example, the
primitive set for GMOS images defines a few of its own primitives and inherits
many other primitives from other sets (classes) like the one for
generic CCD processing, the one related to photometry, the one that applies to
all Gemini data, etc.

4. The reduce command

4.1. Introduction

The reduce command is the DRAGONS Recipe System command line interface.
The Recipe System also provides an application programming interface (API),
whereby users and developers can programmatically invoke Reduce and set
parameters on an instance of that class (see The Reduce Class).

Both interfaces allow users to configure and launch a Recipe System processing
pipeline on one or more similar input datasets. Control of the Recipe System
on the reduce command line is provided by a variety of options and
switches which we will introduce in this chapter.

4.2. Usage Examples

Below we show examples that a user might typically want to do when using
reduce. The command offers a lot of flexibility though, these examples
are just a small subset of the possibilities. The objective here is to help
the user get started.

4.2.1. Nominal usage

Because the Recipe System is automated, in many cases all that is needed is
the command and a filename.

reduce S20161025S0111.fits

The system defaults to the “sq” mode, ie. science quality recipes. The best
match recipe will be used with the best match primitive set. The required
processed calibrations will be fetched from the local calibration manager.

The system defaults to using the Gemini Astrodata configuration package and
the Gemini data reduction package, gemini_instruments and geminidr,
respectively.

4.2.2. Overriding Primitive Parameters

The primitives for each set are given default values that have been found to
give good results in most cases. Depending on the data and the science
objectives, it might be necessary to tweak the primitive parameters to
optimize the reduction. The -p, or in long form --param option allows
the user to override the defaults.

reduce S20161025S0111.fits -p stackFrames:operation=median \
 stackFrames:reject_method=minmax

This sets the stackFrames input parameters operation and
reject_method to median and minmax, respectively.

As one can see that, if several parameters are to be modified, the command can
grow rather long. There is a way to keep it clean, see the section below
on the @file facility.

4.2.3. Calling Specific Recipes and Primitives

The Recipe System’s default behavior is to select the best recipe
automatically. It is however possible, and sometimes required, to override
this.

4.2.3.1. Override the default recipe

The first case where the recipe selection can be overridden is to select a
recipe in the library different from the default. A recipe library can
contain more than one recipe. Only one is set as the default. To let the
Recipe System select the most appropriate recipe library, but then request
the use of recipe within that library other than the default, simply state
the name of the desired recipe. A good example is when making a bad pixel
mask (BPM) for NIRI:

reduce @flats @darks -r makeProcessedBPM

Here the Recipes System will find the recipe library for NIRI flats (because
the flats are first in the list), and then instead of running the default
recipe which would in this case make a processed flat, it will run the
makeProcessedBPM recipe.

For information about the @ format, see The @file Facility below.

4.2.3.2. User recipe

It is possible for the user to force the use of a custom recipe. This is
done with the -r flag again. The structure “recipe library containing
recipes” must still be obeyed. Here is how the request is made:

reduce S20161025S0111.fits -r myrecipelibrary.myspecialrecipe

Both the name of the recipe library and, after the dot, the name of the
recipe function are required. The path to the library can be prepended.

4.2.3.3. Calling a single primitive

Single primitives can be called directly from the command line bypassing the
recipes entirely. A useful case is when one wants to display dataset. There
is a primitive named display. The Recipe System will find the best-match
primitive set, and then run the display primitive it contains.

reduce S20161025S0111.fits -r display

4.2.4. Manually Setting Calibrations

When the calibration manager is not available or if working on a new type
of data not yet coded in the calibration association rules, it will be
necessary to specify the processed calibration to use on the command line.

Another situation would be if one wanted to try various version of a calibration
or different calibrations altogether to try to optimize a reduction. In such
a case, one needs full control on which calibration is being used rather than
always using the “best-match” returned by the local calibration manager.

reduce S20161025S0111.fits --user_cal processed_bias:S20161025S0200_bias.fits

4.3. Command Line Options and Switches

The reduce command help is provided by the --help option. This help is
also available as a manual page as (man reduce). The options and switches
are described further here.

4.3.1. Information Switches

	-h, –help

	show the help message and exit

	-v, –version

	show program’s version number and exit

	-d, –displayflags

	Display all parsed option flags and exit.

The table provides a convenient view of all passed and default values
for reduce. This can be useful when wanting to verify the syntax of
a reduce call and to make sure everything has been parsed as expected.

Note that when not specified, recipename indicates ‘None’ because at
this point in the execution the Recipe System has not yet been invoked and
a default recipe not yet been determined.
Eg.,

$ reduce -d --logmode quiet fitsfile.fits

 Literals var 'dest' Value

 ['-d', '--displayflags'] :: displayflags :: True
 ['-p', '--param'] :: userparam :: None
 ['--logmode'] :: logmode :: quiet
 ['--ql'] :: mode :: sq
 ['--qa'] :: mode :: sq
 ['--upload'] :: upload :: None
 ['-r', '--recipe'] :: recipename :: None
 ['--adpkg'] :: adpkg :: None
 ['--suffix'] :: suffix :: None
 ['--drpkg'] :: drpkg :: geminidr
 ['--user_cal'] :: user_cal :: None
 ['--logfile'] :: logfile :: reduce.log

Input fits file(s): fitsfile.fits

4.3.2. Configuration Switches and Options

	–adpkg <ADPKG>

	Specify an external AstroData configuration package. This is used for
non-Gemini instruments or during development of a new Gemini instrument.
The package must be importable. The default AstroData configuration
package is gemini_instruments and it is distributed with DRAGONS.

E.g., --adpkg scorpio_instruments

	–drpkg DRPKG

	Specify an external data reduction package. This is used for
non-Gemini instruments or during development of a new Gemini instrument.
The package must be importable. The default data reduction package is
geminidr and it is distributed with DRAGONS.

E.g., --drpkg scorpiodr

	–logfile <LOGFILE>

	Set the log file name. The default is reduce.log and it is written in
the current directory.

	–logmode <LOGMODE>

	Set logging mode. One of

	standard

	quiet

	debug

“quiet” writes only to the log file. The other modes writes information
to the screen and to the log file. The default is “standard”.

	-p <USERPARAM [USERPARAM …]>, –param <USERPARAM [USERPARAM …]>

	Set a primitive input parameter from the command line. The form is

-p primitivename:parametername=value

This sets the parameter such that it applies only for the primitive
“primitivename”. To set multiple parameter-value pairs, separate them with
whitespace, eg. -p par1=val1 par2=val2

The form -p parametername=value is also allowed but beware, that will
sets any parameter with that name from any primitives to that value. It
is somewhat dangerous and of limited use. It is to be seen as a global
setting.

	–qa

	Set the mode of operation to “qa”, “quality assessment”. When no “qa”
or “ql” flag are specified the default mode is “sq”. The “qa” mode is use
internally at Gemini. Recipes differ depending on the mode.

	–ql

	Set the mode of operation to “ql”, “quicklook”. When no “qa” or “ql”
flag are specified the default mode is “sq”. The “ql” mode is use for
quick, near science quality reduction. Science quality is not guaranteed.
Recipes differ depending on the mode. This mode is not yet implemented.
“ql” recipes are not yet available.

	-r <RECIPENAME>, –recipe <RECIPENAME>

	Specify a recipe by name. Users can request a non-default system recipe
by names, e.g., -r makeProcessedBPM, or may specify their own recipe
library and recipe function within. A user-defined recipe function
must be “dotted” with the recipe file.

-r /path/to/recipes/recipelibrary.recipename

For a recipe file in the current working directory, the path can be
omitted:

-r recipelibrary.recipename

A recipe library can contain more than one recipe. The recipe library
must be a Python module, eg. recipelibrary.py. The recipes are
Python functions within that module.

Finally, instead of specifying a recipe, it is possible to specify a
primitive:

-r display

	–suffix <SUFFIX>

	Add “suffix” to output filenames at the end of the reduction.

	–upload

	Currently used internally (Gemini) only.

Send specific pipeline products to internal database. The default is None.

--upload metrics calibs

or equivalently:

--upload=metrics,calibs

	–user_cal <USER_CAL [USER_CAL …]>

	Specify which processed calibration to use for the reduction. This
override the selection from the local calibration manager. The syntax is:

--user_cal calibrationtype:path/calibrationfilename

Eg.:

--user_cal processed_bias:somepath/processed_bias.fits

The recognized calibration types are currently:

	processed_arc

	processed_bias

	processed_dark

	processed_flat

	processed_fringe

	processed_standard

4.4. The @file Facility

The reduce command line interface supports an “at-file” facility.
An @file allows users to provide any and all command line options and flags
to reduce in an acsii text file. This tool is very useful to keep the
command line to a reasonable length and also to keep a record of the
configurations that are applied. Here we illustrate how to use it.

4.4.1. Basic @file Usage

In a previous section we had an example where we were modifying a primmitive’s
input parameter values.

reduce S20161025S0111.fits -p stackFrames:operation=median \
 stackFrames:reject_method=minmax

Instead of typing the parameter settings on the command line, it might be
more convenient to use an “at-file”. We can write the parameter information
in the “at-file” and add it to our reduce call. Let us have a file
named “myreduction.par” with this content:

-p
stackFrames:operation=median
stackFrames:reject_method=minmax

Now we can call reduce as follow:

reduce S20161025S0111.fits @myreduction.par

By passing an @file to reduce on the command line, users can encapsulate
all the options and positional arguments they may wish to specify in a single
@file. It is possible to use multiple @file and even to embed one or
more @file in another (see Recursive @file Usage). The parser opens all files
sequentially and parses all arguments in the same manner as if they were
specified on the command line.

To further illustrate the convenience provided by an @file, we’ll continue
with an example reduce command line that has even more arguments. We will
also include new positional arguments, i.e., file names:

$ reduce -p stackFrames:operation=median stackFrames:reject_method=minmax \
 -r myrecipelib.myrecipe S20161025S0200.fits S20161025S0201.fits \
 S20161025S0202.fits S20161025S0203.fits S20161025S0204.fits

Here, two user parameters are being specified with -p, a recipe with
-r, and a list of input datasets. We can write all this into a plain text
@file, let’s name it “reduce_args.par”:

input data files
S20161025S0200.fits
S20161025S0201.fits
S20161025S0202.fits
S20161025S0203.fits
S20161025S0204.fits

primitive parameters optimization
--param

 # stackFrames
 stackFrames:operation=median
 stackFrames:reject_method=minmax

recipe
-r
 myrecipelib.myrecipe

Now we can call reduce this way:

reduce @reduce_args.par

The order of the arguments in an @file is irrelevant, as is the file name.
Also, the parser sees no difference across white space characters, such as
space, tabs, newlines, etc. Comments are accommodated, both full line and
in-line with the #
character.

Finally, the “at-file” does not need to be in the current directory. A path
can be given. For example:

reduce @../reduce_args.par

4.4.2. Recursive @file Usage

As implemented, the @file facility will recursively handle and process
other @file specifications that appear in a @file or
on the command line. For example, we may have another file containing a
list of input files, let’s call it “bias.lis”:

raw biases
S20161025S0200.fits
S20161025S0201.fits
S20161025S0202.fits
S20161025S0203.fits
S20161025S0204.fits

Then, we can add this list as an “at-file” in the reduce_args.par file:

input files
@bias.lis

primitive parameters optimization
--param

 # stackFrames
 stackFrames:operation=median
 stackFrames:reject_method=minmax

recipe
-r
 myrecipelib.myrecipe

The reduce call becomes:

reduce @reduce_args.par

The parser will open and read the @bias.lis, consuming those lines in the
same way as any other command line arguments. Indeed, such a file need not only
contain fits files (positional arguments), but other arguments as well. This is
recursive. That is, the @fitsfiles can contain other “at-files”, which can
contain other “at-files”, which can contain …, etc. These will be processed
serially.

Or one might want to keep the input files and the parameter settings separate.
Then if we remove the @bias.lis from the “reduce_args.par” files, we can
use it explicitly on the reduce command line:

reduce @bias.lis @reduce_args.par

4.4.3. Overriding @file Values

The reduce application employs a customized command line parser such that
the command line option given in the @file can be modified on the command
line after the @file has been processed.

The -p or --param will accumulate a set of parameters or override a
particular parameter. This may be seen when a parameter is specified in a
user @file and then specified on the command line. See Example 1 and 2
below.

For unitary value arguments, the command line value will override the
@file value. See Example 3 below.

It is further specified that if one or more datasets (i.e. positional
arguments) are passed on the command line, all files appearing as
positional arguments in the “at-file” will be replaced by the one(s) on the
command line. See Example 4 below.

In all cases, remember to use the -d option to verify the parsing if you
are not sure.

4.4.3.1. Examples

The @file used in the examples, “reducepar”, contains:

input data files
S20161025S0200.fits
S20161025S0201.fits
S20161025S0202.fits
S20161025S0203.fits
S20161025S0204.fits

primitive parameters optimization
--param

 # stackFrames
 stackFrames:operation=median

recipe
-r
 myrecipelib.myrecipe

Example 1: Accumulate a new parameter:

reduce @reducepar --param stackFrames:hsigma=5.0

Summary of parsed options:

Input files: no changes
Parameters: ['stackFrames:operation=median', 'stackFrames:hsigma=5.0']
Recipe: no changes

Example 2: Override a parameter defined in the @file:

reduce @reducepar --param stackFrames:operation=wtmean

Summary of parsed options:

Input files: no changes
Parameters: ['stackFrames:operation=wtmean']
Recipe: no changes

Example 3: Override the recipe:

reduce @reducepar -r myrecipelib.different_recipe

Summary of parsed options:

Input files: no changes
Parameters: no changes
Recipe: myrecipelib.different_recipe

Example 4: Override the input files. All the files in the @files will
be ignored:

reduce @reducepar S20161025S0111.fits

Summary of parsed options:

Input files: S20161025S0111.fits
Parameters: no changes
Recipe: no changes

5. The Reduce Class

The Reduce class provides the underlying structure of the reduce
command. This section describes and discusses the programmatic interface
available on the class Reduce. This section is for users wanting to use
the Reduce class programmatically.

The reduce application introduced in the previous chapter is a user
interface script providing a command line access to the Reduce class.
The reduce application parses the arguments and initialize the Reduce
class and its runr method. It is possible to bypass the reduce
command and sets attributes directly on an instance of Reduce, as the
following discussion illustrates.

5.1. Using Reduce

The Reduce class is defined in the recipe_system.reduction.coreReduce
module. The Reduce class provides a set of attributes and one public method,
runr that launches a reduction. This is the only public method on the
class.

5.1.1. Very Basic Usage

The most basic usage involves importing the class, instantiating it, assigning
a file to reduce and then launching the runr method.

>>> from recipe_system.reduction.coreReduce import Reduce
>>> myreduce = Reduce()
>>> myreduce.files.append('S20161025S0111.fits')
>>> myreduce.runr()

5.1.2. Typical Usage for Reduction

A more typical usage for reducing data can involve setting other options and
can include setting up a logger. When using the Gemini data reduction
primitives, the logger is highly recommended.

Normal usage will also likely involve the use of the calibration database
facility, caldb. We will ignore caldb here and rather fully describe
it and its usage in a subsequent chapter, Local Calibration Database. See Full API Example
where we put it all together.

>>> from recipe_system.reduction.coreReduce import Reduce
>>> from gempy.utils import logutils
>>>
>>> logutils.config(file_name='example.log')
>>>
>>> inputfiles = ['S20161025S0200.fits', 'S20161025S0201.fits']
>>> myreduce = Reduce()
>>> myreduce.files = inputfiles
>>> myreduce.runr()

Neither coreReduce nor the Reduce class initializes any logging activity.
This is the responsibility of the programmer. The Recipe System does not
require a logger but the Gemini primitives do. The absence of a logger when
using the Gemini data reduction package leads to double the reporting on
the screen. More an annoyance than a problem, admittedly.

You are free to provide your own logger, or you can use the fully defined
logger provided in DRAGONS. It is recommended that you use the system
logger as Reduce is tuned to use the DRAGONS logger.

Returning to the example above, we could also set the recipe to a custom
recipe, override a primitive parameters, set a data reduction package, etc.
The attributes that can be set are discussed in
Public Attributes to Reduce below.

>>> myreduce.recipename = 'myrecipelib.myrecipe'
>>> myreduce.uparms = [('stackFrames:operation', 'median')]
>>> myreduce.dkpkg = 'thirdpartydr'
>>> # rerun with the modified recipe and parameter
>>> myreduce.runr()

A notable quirk is how to set the adpkg that is defined in the reduce
command line interface. The Reduce class does not have an attribute for
it. Instead, the programmer must import any third party AstroData instrument
configuration files explicitely before launching runr.

>>> import astrodata
>>> import thirdparty_instruments
>>>
>>> myreduce.Reduce()
>>> myreduce.drpkg = 'thirdpartydr'
>>> myreduce.files.append('filename.fits')
>>> myreduce.runr()

5.2. Public Attributes to Reduce

	Public Attribute

	Python type

	Default

	files

	<type ‘list’ of ‘str’>

	[]

	output_filenames

	<type ‘list’ of ‘str’>

	None

	mode

	<type ‘str’>

	‘sq’

	recipename

	<type ‘str’>

	‘_default’

	drpkg

	<type ‘str’>

	‘geminidr’

	suffix

	<type ‘str’>

	None

	ucals

	<type ‘dict’>

	None

	uparms

	<type ‘list’ of ‘tuple’>

	None

	upload

	<type ‘list’ of ‘str’>

	None

	files

	A list of input file names to reduce. Only the first file in the list will
be used for the recipe and primitive selection.

myreduce.files.extend(['S20161025S0200.fits', 'S20161025S0201.fits'])

	output_filenames

	A list of output file names. This cannot be set. It is a return
value. It is used after the recipe has run to collect the names of the
files that were created.

output_stack = myreduce.output_filenames[0]

	mode

	The reduction mode. The Gemini data reduction package currently supports
‘sq’ and ‘qa’, with ‘ql’ in the works. [‘sq’: Science Quality,
‘qa’: Quality Assessment, ‘ql’: Quick Look Reduction.]

myreduce.mode = 'qa'

	recipename

	The name of the recipe to use. If left to “_default”, the Recipe System
will invoke the mappers and select the best matching recipe library and
use its default recipe.

If only the name of a recipe is provided, the
mappers will be invoked to find the best matching recipe library and use
the named recipe rather than the default.

If a “module.recipe” string is provided, the user’s “module” will be
imported and the user’s “recipe” will be used. No mapping will be done.

myreduce.recipename = 'myrecipelib.myrecipe'

If the name of a primitive is given, the Recipe System will find the best
match primitive set and run the specified primitives from that set.

	suffix

	The suffix to add the final outputs of a recipe. In the Gemini primitives,
default suffixes are assigned to each primitives. Setting suffix
will override the default suffix of the last primitive in the recipe.

myreduce.suffix = '_flatBfilter'

	drpkg

	The name of the data reduction package to use. The default is geminidr.
If using a third-party package, or during new instrument development,
set this attributes to import the correct suite of recipes and primitives.

myreduce.drpkg = 'scorpiodr'

	ucals

	Set the processed calibration to be used. This overrides the automatic
selection done by the calibration manager, if one is being used. This
setting must be used if no calibration manager is used or available, or
when, for example, the calibrations association rules are not yet
implemented. It is also useful for testing and for getting full control
of the calibrations being used.

The format for this attribute’s value is somewhat complicated. It is
recommended to use the normalize_ucals function in the
recipe_system.utils.reduce_utils module to get the dictionary this
attribute expects.

The format needs to looks like this:

{(ad.calibration_key(), 'processed_bias'): '/path/master_bias.fits'}

There must be one entry per input files for each type of calibrations.

The recognized calibration types are currently:

	processed_arc

	processed_bias

	processed_dark

	processed_flat

	processed_fringe

	processed_standard

Here’s how to use normalize_ucals:

from recipe_system.utils.reduce_utils import normalize_ucals

mycalibrations = ['processed_bias:/path/master_bias.fits',
 'processed_flat:/path/master_Bflat.fits']

ucals_dict = normalize_ucals(myreduce.files, mycalibrations)
myreduce.ucals = ucals_dict

	uparms

	Set primitive parameter values. This will override the primitive
defaults. This is a list of tuples with the primitive name and parameter
in the first element, and the value in the second one.

myreduce.uparms = [('stackFrames:operation', 'median')]

If the primitive name is omitted all parameters with that name, in any
primitives will be reset. Be careful.

	upload

	Internal use only. Specify which types of product to upload to the
Gemini internal database. Allowed values are “metrics”, “calibs”, and
“science”, the latter is planned but not yet implemented.

6. Local Calibration Database

The Recipe System has a system to retrieve processed calibration
automatically. This system must work with a Calibration Manager.
Currently, only one public Calibration Manager is available, the Gemini
Calibration Manager, GeminiCalMgr. This must be installed as a
DRAGONS dependency; a conda install will take care of that (see
Installation).

The Calibration Manager contains the calibration association rules and
database access hooks. The Gemini Calibration Manager uses exactly the
same calibration association rules as the Gemini Observatory Archive (GOA).

The calibration facility requires a database. The Recipe System’s
caldb application helps the user configure and create a local, lightweight
sqlite database, and add or remove calibration files to and from that
database.

In this chapter, we explain how to use caldb to add processed
calibrations that the Recipe System will pick up when needed.

Note

We intend to improve the Calibration Manager side of things
to make expanding the association rules for new instruments or
non-Gemini instruments feasible.

6.1. Configuring caldb

The first time caldb is used for a project, either via command line or
API, it needs to be configured and initialized. The configuration is
stored in a text file in a special directory named ~/.geminidr/, in a
file called rsys.cfg. The ~ means the user’s home directory. The
very first step, to be done only once, is to create the directory and the
configuration file.

$ mkdir ~/.geminidr
$ touch ~/.geminidr/rsys.cfg

The rsys.cfg file must contain the following lines:

[calibs]
standalone = True
database_dir = ~/.geminidr # set this path to whatever you want.

The standalone option tells caldb if you are using a local database
when it is set to True. standalone = False is used only internally at
Gemini when using the internal data manager.

The database_dir parameter points to the directory hosting the calibration
database. The database name is always cal_manager.db, this cannot be set,
only the directory where it lives. It is possible to have more than one
database as long as they are in different directory. Which one will be picked
up will be set through the database_dir parameter in rsys.cfg.

6.2. Using caldb on the Command Line

The caldb tool is used to interact with the local calibration database.
This is where the Recipe System will look for processed calibrations. For
a reminder of its basic usage, one can always use the --help flag:

$ caldb --help
usage: caldb [-h] {config,init,list,add,remove} ...

Calibration Database Management Tool

positional arguments:
 {config,init,list,add,remove}
 Sub-command help
 config Display configuration info
 init Create and initialize a new database.
 list List calib files in the current database.
 add Add files to the calibration database. One or more
 files or directories may be specified.
 remove Remove files from the calibration database. One or
 more files may be specified.

optional arguments:
 -h, --help show this help message and exit

There can be only one positional argument given to caldb, this means only
one file at a time can be added or removed from the database.

Once the configuration file is in place (see Configuring caldb), one can
verify the configuration by doing:

$ caldb config

Using configuration file: ~/.geminidr/rsys.cfg
Active database directory: /Users/username/.geminidr
Database file: /Users/username/.geminidr/cal_manager.db

The 'standalone' flag is active, meaning that local calibrations will be used

To initialize a new database with the selected configuration:

$ caldb init

Once the database is initialized (created), it is ready for use.

To add a file:

$ caldb add /path/to/master_bias.fits

If the path is not given, the current directory is assumed. The addition
of a file to the database is simply the addition of the filename and
its location on the disk. The file itself is not stored. If the
calibration file is deleted or moved, the database will not know and still
think that the file is there.

To see what is in the database:

$ caldb list
master_bias.fits /path/to/

To remove a file from the database:

$ caldb remove master_bias.fits

Warning

If a file that is already stored within the database needs
updating, it will need to be removed and added again. caldb has
no update tool.

To see caldb used in a complete example along with the other tools see
Full Command Line Example.

6.3. Using the caldb API

Before being usable in a Python program, the local calibration manager
must be configured. This cannot be done from the API. See
Configuring caldb for instructions.

The calibration database is initialized and the configuration are read into the the calibration service as follow:

>>> from recipe_system import cal_service
>>>
>>> caldb = cal_service.CalibrationService()
>>> caldb.config()
>>> caldb.init()
>>> cal_service.set_calservice()

The calibration service is then ready to use. This must be done before
Reduce is instantiated.

To add a processed calibration to the database:

>>> caldb.add_cal('/path/to/master_bias.fits')

If the path is not given, the current directory is assumed. The addition
of a file to the database is simply the addition of the filename and
its location on the disk. The file itself is not stored. If the
calibration file is deleted or moved, the database will not know and still
think that the file is there.

To see what is in the database:

>>> for f in caldb.list_files():
... print(f)
...
FileData(name=u'master_bias.fits', path=u'/path/to')

To remove a file from the database:

>>> caldb.remove_cal('master_bias.fits')

Warning

If a file that is already stored within the database needs
updating, it will need to be removed and added again. caldb has
no update tool.

To see it used in a complete example along with the other tools see
Full API Example.

7. Supplemental tools

DRAGONS provides a number of command line tools that users should find helpful
in executing reduce on their data. Some of those tools also offer an API.

These supplemental tools can help users discover information, not only
about their own data, but about the Recipe System, such as available
recipes, primitives, and defined tags.

If your environment has been configured correctly these applications will
work directly.

7.1. dataselect

The tool dataselect will help with the bookkeeping and with creating lists
of input files to feed to the Recipe System. The tool has a command line and
an API. This tool finds files that match certain criteria defined through
AstroData Tags and expressions involving AstroData Descriptors.

You can access the basic documentation from the command line by typing:

$ dataselect --help

usage: dataselect [-h] [--tags TAGS] [--xtags XTAGS] [--expr EXPRESSION]
 [--strict] [--output OUTPUT] [--verbose] [--debug]
 inputs [inputs ...]

Find files that matches certain criteria defined by tags and expression
involving descriptors.

positional arguments:
 inputs Input FITS file

optional arguments:
 -h, --help show this help message and exit
 --tags TAGS, -t TAGS Comma-separated list of required tags.
 --xtags XTAGS Comma-separated list of tags to exclude
 --expr EXPRESSION Expression to apply to descriptors (and tags)
 --strict Toggle on strict expression matching for exposure_time
 (not just close) and for filter_name (match component
 number).
 --output OUTPUT, -o OUTPUT
 Name of the output file
 --verbose, -v Toggle verbose mode when using -o
 --debug Toggle debug mode

7.1.1. dataselect Command Line Tool

dataselect accepts list of input files separated by space, and wildcards.
Below are some usage examples.

	This command selects all the FITS files inside the raw directory with a
tag that matches DARK.

$ dataselect raw/*.fits --tags DARK

	To select darks of a specific exposure time:

$ dataselect raw/*.fits --tags DARK --expr='exposure_time==20'

	To send that list to a file that can be used later:

$ dataselect raw/*.fits --tags DARK --expr='exposure_time==20' -o dark20s.lis

	This commands prints all the files in the current directory that do not
have the CAL tag (calibration files).

$ dataselect raw/*.fits --xtags CAL

	The xtags can be used with tags. To select images that are not
flats:

$ dataselect raw/*.fits --tags IMAGE --xtags FLAT

	This command selects all the files with a specific target name:

$ dataselect --expr 'object=="FS 17"' raw/*.fits

	This command selects all the files with an “observation_class” descriptor
that matches the “science” value and a specific exposure time:

$ dataselect --expr '(observation_class=="science" and exposure_time==60.)' raw/*.fits

7.1.2. dataselect API

The same selections presented in the command line section above can be done
from the dataselect API. Here is the API versions of the examples
presented in the previous sections.

The list of files on disk must first be obtained with Python’s glob module.

>>> import glob
>>> all_files = glob.glob('raw/*.fits')

The dataselect module is located in gempy.adlibrary and must first be
imported:

>>> from gempy.adlibrary import dataselect

	This command selects all the FITS files inside the raw directory with a
tag that matches DARK.

>>> all_darks = dataselect.select_data(all_files, ['DARK'])

	To select darks of a specific exposure time:

>>> expression = 'exposure_time==20'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> darks20 = dataselect.select_data(all_files, ['DARK'], [], parsed_expr)

	To send that list to a file that can be used later:

>>> expression = 'exposure_time==20'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> darks20 = dataselect.select_data(all_files, ['DARK'], [], parsed_expr)
>>> with open('dark20s.lis', 'w') as f:
... for filename in dark20:
... f.write(filename + '\n')
...
>>>

Note that the need to send a list of a file on disk will probably not be
very common when using the API as Reduce will take the Python list
directly.

	This commands prints all the files in the current directory that do not
have the CAL tag (calibration files).

>>> non_cals = dataselect.select_data(all_files, [], ['CAL'])

	The xtags can be used with tags. To select images that are not
flats:

>>> has_tags = ['IMAGE']
>>> has_not_tags = ['FLAT']
>>> non_flat_images = dataselect.select_data(all_files, has_tags, has_not_tags)

	This command selects all the files with a specific target name:

>>> expression = 'object="FS 17"'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> stds = dataselect.select_data(all_files, expression=parsed_expr)

	This command selects all the files with an “observation_class” descriptor that
matches the “science” value and a specific exposure time:

>>> expression = '(observation_class=="science" and exposure_time==60.)'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> sci60 = dataselect.select_data(all_files, expression=parsed_expr)

7.1.3. The strict Flag

The strict flag applies to the descriptors exposure_time() and
filter_name(). To keep the user interface more friendly, in the
expressions, the exposure time is matched on a “close enough” principle and
the filter name is matched on a “general bandpass name” principle.

For example, if the exposure time in the header is 10.001 second, from a user’s
perspective, asking to match “10” seconds is a lot nicer, exposure_time==10.
Similarly, asking for the “H”-band filter is more natural than asking for the
“H_G0203” filter.

However, there might be cases where the exposure time or the filter name must
be matched exactly. In such case, the strict flag should be activated.
For example:

$ dataselect raw/*.fits --strict --expr='exposure_time==0.95'

And:

>>> expression = 'exposure_time==0.95'
>>> parsed_expr = dataselect.expr_parser(expression, strict=True)
>>> filelist = dataselect.select_data(all_files, expression=parsed_expr)

7.2. showd

The showd command line tool helps the user gather information about files
on disk. The “d” in showd stands for “descriptor”. showd is used to
show the value of specific AstroData descriptors for the files requested.

Its basic usage can be printed using the following command:

$ showd --help
usage: showd [-h] --descriptors DESCRIPTORS [--csv] [--debug]
 [inputs [inputs ...]]

For each input file, show the value of the specified descriptors.

positional arguments:
 inputs Input FITS files

optional arguments:
 -h, --help show this help message and exit
 --descriptors DESCRIPTORS, -d DESCRIPTORS
 comma-separated list of descriptor values to return
 --csv Format as CSV list.
 --debug Toggle debug mode

One or more descriptors can be printed together. Here is an example::

$ showd -d object,exposure_time *.fits
--
filename object exposure_time
--
N20160102S0275.fits SN2014J 20.002
N20160102S0276.fits SN2014J 20.002
N20160102S0277.fits SN2014J 20.002
N20160102S0278.fits SN2014J 20.002
N20160102S0279.fits SN2014J 20.002
N20160102S0295.fits FS 17 10.005
N20160102S0296.fits FS 17 10.005
N20160102S0297.fits FS 17 10.005
N20160102S0298.fits FS 17 10.005
N20160102S0299.fits FS 17 10.005

Above is a human-readable table. It is possible to return a comma-separated
list, CSV list, with the --csv tag:

$ showd -d object,exposure_time *.fits --csv
filename,object,exposure_time
N20160102S0275.fits,SN2014J,20.002
N20160102S0276.fits,SN2014J,20.002
N20160102S0277.fits,SN2014J,20.002
N20160102S0278.fits,SN2014J,20.002
N20160102S0279.fits,SN2014J,20.002
N20160102S0295.fits,FS 17,10.005
N20160102S0296.fits,FS 17,10.005
N20160102S0297.fits,FS 17,10.005
N20160102S0298.fits,FS 17,10.005
N20160102S0299.fits,FS 17,10.005

The showd command also integrates well with dataselect. You can use
dataselect together with showd if you want to print
the descriptors values in a data subset:

$ dataselect raw/*.fits --tag FLAT | showd -d object,exposure_time
--
filename object exposure_time
--
N20160102S0363.fits GCALflat 42.001
N20160102S0364.fits GCALflat 42.001
N20160102S0365.fits GCALflat 42.001
N20160102S0366.fits GCALflat 42.001
N20160102S0367.fits GCALflat 42.001

The “pipe” `` | `` gets the dataselect output and passes it to showd.

7.3. showrecipes

The Recipe System will select the best recipe for your data, which
can be overriden when necessary. To see what sequence of primitives a
recipe will execute or which recipes are available for the dataset, one
can use showrecipes.

7.3.1. Show Recipe Content

To see the content of the best-matched default recipes:

$ showrecipes S20170505S0073.fits

Recipe not provided, default recipe (makeProcessedFlat) will be used.
Input file: /path_to/S20170505S0073.fits
Input tags: ['FLAT', 'LAMPOFF', 'AZEL_TARGET', 'IMAGE', 'DOMEFLAT',
'GSAOI', 'RAW', 'GEMINI', 'NON_SIDEREAL', 'CAL', 'UNPREPARED', 'SOUTH']
Input mode: sq
Input recipe: makeProcessedFlat
Matched recipe: geminidr.gsaoi.recipes.sq.recipes_FLAT_IMAGE::makeProcessedFlat
Recipe location: /path_to/dragons/geminidr/gsaoi/recipes/sq/recipes_FLAT_IMAGE.py
Recipe tags: set(['FLAT', 'IMAGE', 'GSAOI', 'CAL'])
Primitives used:
 p.prepare()
 p.addDQ()
 p.nonlinearityCorrect()
 p.ADUToElectrons()
 p.addVAR(read_noise=True, poisson_noise=True)
 p.makeLampFlat()
 p.normalizeFlat()
 p.thresholdFlatfield()
 p.storeProcessedFlat()

To see the content of a specific recipe:

$ showrecipes S20170505S0073.fits -r makeProcessedBPM

Input file: /path_to/S20170505S0073.fits
Input tags: ['FLAT', 'LAMPOFF', 'AZEL_TARGET', 'IMAGE', 'DOMEFLAT',
'GSAOI', 'RAW', 'GEMINI', 'NON_SIDEREAL', 'CAL', 'UNPREPARED', 'SOUTH']
Input mode: sq
Input recipe: makeProcessedBPM
Matched recipe: geminidr.gsaoi.recipes.sq.recipes_FLAT_IMAGE::makeProcessedBPM
Recipe location: /path_to/dragons/geminidr/gsaoi/recipes/sq/recipes_FLAT_IMAGE.pyc
Recipe tags: set(['FLAT', 'IMAGE', 'GSAOI', 'CAL'])
Primitives used:
 p.prepare()
 p.addDQ()
 p.addVAR(read_noise=True, poisson_noise=True)
 p.ADUToElectrons()
 p.selectFromInputs(tags="DARK", outstream="darks")
 p.selectFromInputs(tags="FLAT")
 p.stackFrames(stream="darks")
 p.makeLampFlat()
 p.normalizeFlat()
 p.makeBPM()

7.3.2. Show Index of Available Recipes

Of course in order to ask for a specific recipe, it is useful to know
which recipes are available to the dataset. To see the index of
available recipes:

$ showrecipes S20170505S0073.fits --all

Input file: /path_to/S20170505S0073.fits
Input tags: set(['FLAT', 'LAMPOFF', 'AZEL_TARGET', 'IMAGE', 'DOMEFLAT',
'GSAOI', 'RAW', 'GEMINI', 'NON_SIDEREAL', 'CAL', 'UNPREPARED', 'SOUTH'])
Recipes available for the input file:
 geminidr.gsaoi.recipes.sq.recipes_FLAT_IMAGE::makeProcessedBPM
 geminidr.gsaoi.recipes.sq.recipes_FLAT_IMAGE::makeProcessedFlat
 geminidr.gsaoi.recipes.qa.recipes_FLAT_IMAGE::makeProcessedFlat

The output shows that there are two recipes for the SQ (Science Quality)
mode and one recipe for the QA (Quality Assesment) mode. By default,
the Recipe System uses the SQ mode for processing the data.

As for the other commands, you can use the --help or -h flags on
the command line to display the help message.

7.4. showpars

The showpars application is a simple command line utility allowing users
to see the available parameters and defaults for a particular primitive
function applicable to a given dataset. Since the applicable primitives
for a dataset are dependent upon the tagset of the identified dataset
(i.e. NIRI IMAGE , F2 SPECT , GMOS BIAS, etc.), which is
to say, the kind of data we are looking at, the parameters available on a
named primitive function can vary across data types, as can the primitive function
itself. For example, F2 IMAGE stackFlats uses the generic implementation of
the function, while GMOS IMAGE stackFlats overrides that generic method.

We examine the help on the command line of showpars:

$ showpars -h
usage: showpars [-h] [-v] filen primn

Primitive parameter display, v2.2.0

positional arguments:
 filen filename
 primn primitive name

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit

Two arguments are required: the dataset filename, and the primitive name of
interest. As readers will note, showpars provides a wealth of information
about the available parameters on the specified primitive, including allowable
values or ranges of values:

$ showpars S20180516S0237.fits stackFlats
Dataset tagged as set(['RAW', 'GMOS', 'GEMINI', 'SIDEREAL', 'FLAT',
'UNPREPARED', 'IMAGE', 'CAL', 'TWILIGHT', 'SOUTH'])
Settable parameters on 'stackFlats':
==
 Name Current setting

suffix '_stack' Filename suffix
apply_dq True Use DQ to mask bad pixels?
scale False Scale images to the same intensity?
operation 'mean' Averaging operation
Allowed values:
 wtmean variance-weighted mean
 mean arithmetic mean
 median median
 lmedian low-median

reject_method 'minmax' Pixel rejection method
Allowed values:
 minmax reject highest and lowest pixels
 none no rejection
 varclip reject pixels based on variance array
 sigclip reject pixels based on scatter

hsigma 3.0 High rejection threshold (sigma)
 Valid Range = [0,inf)
lsigma 3.0 Low rejection threshold (sigma)
 Valid Range = [0,inf)
mclip True Use median for sigma-clipping?
max_iters None Maximum number of clipping iterations
 Valid Range = [1,inf)
nlow 0 Number of low pixels to reject
 Valid Range = [0,inf)
nhigh 0 Number of high pixels to reject
 Valid Range = [0,inf)
memory None Memory available for stacking (GB)
 Valid Range = [0.1,inf)

With this information, users can adjust parameters for particular primitive
functions. As we have seen already, this can be done from the reduce
command line or the Reduce class. Building on material covered in this
manual, and continuing our example from above::

$ reduce -p stackFlats:nhigh=3 <fitsfiles> [<fitsfile>, ...]

And the reduction proceeds. When the stackFlats primitive begins, the
new value for nhigh will be used.

Note

Advanced User. Inheritance and class overrides within the primitive
and parameter hierarchies means that one cannot simply look at any given
primitive function and its parameters and extrapolate those to all such
named primitives and parameters. Primitives and their parameters are tied
to the particular classes designed for those datasets identified as a
particular kind of data.

7.5. typewalk

The typewalk application examines files in a directory or directory tree
and reports the data classifications through the astrodata tag sets. By
default, typewalk will recurse all subdirectories under the current
directory. Users may specify an explicit directory with the -d, --dir
option.

typewalk supports the following options:

-h, --help show this help message and exit
-b BATCHNUM, --batch BATCHNUM
 In shallow walk mode, number of files to process at a
 time in the current directory. Controls behavior in
 large data directories. Default = 100.
-d TWDIR, --dir TWDIR
 Walk this directory and report tags. default is cwd.
-f FILEMASK, --filemask FILEMASK
 Show files matching regex <FILEMASK>. Default is all
 .fits and .FITS files.
-n, --norecurse Do not recurse subdirectories.
--or Use OR logic on 'tags' criteria. If not specified,
 matching logic is AND (See --tags). Eg., --or --tags
 SOUTH GMOS IMAGE will report datasets that are one of
 SOUTH *OR* GMOS *OR* IMAGE.
-o OUTFILE, --out OUTFILE
 Write reported files to this file. Effective only with
 --tags option.
--tags TAGS [TAGS ...]
 Find datasets that match only these tag criteria. Eg.,
 --tags SOUTH GMOS IMAGE will report datasets that are
 all tagged SOUTH *and* GMOS *and* IMAGE.
--xtags XTAGS [XTAGS ...]
 Exclude <xtags> from reporting.

Files are selected and reported through a regular expression mask which,
by default, finds all “.fits” and “.FITS” files. Users can change this mask
with the -f, –filemask option.

As the –tags option indicates, typewalk can find and report data
that match specific tag criteria. For example, a user might want to find
all GMOS image flats (--tags GMOS IMAGE FLAT) under a certain directory.
typewalk will locate and report all datasets that would match the
AstroData tags, set(['GMOS', 'IMAGE', 'FLAT']).

A user may request that an output file be written containing all datasets
matching AstroData tag qualifiers passed by the –tags option. An output
file is specified through the -o, –out option. Output files are
formatted so they may be passed directly to the reduce command line via
that applications ‘at-file’ (@file) facility. See The @file Facility or the reduce
help for more on ‘at-files’. However, for such use, dataselect is
probably preferable as it is more versatile than typewalk.

Users may select tag matching logic with the –or switch. By default,
qualifying logic is AND, i.e. the logic specifies that all tags must be
present (x AND y); –or specifies that ANY tags, enumerated with
–tags, may be present (x OR y). –or is only effective when the
–tags option is specified with more than one tag.

As a simple example, find all F2 SPECT datasets in a directory tree:

$ typewalk --tags SPECT F2

Users may find the –xtags flag useful, as it provides a facility for
filtering results further by allowing certain tags to be excluded from the
report.

For example, find GMOS, IMAGE tag sets, but exclude ACQUISITION images from
reporting:

$ typewalk --tags GMOS IMAGE --xtags ACQUISITION

directory: ../test_data/output
 S20131010S0105.fits (GEMINI) (SOUTH) (GMOS) (IMAGE) (RAW)
 (SIDEREAL) (UNPREPARED)

 S20131010S0105_forFringe.fits (GEMINI) (SOUTH) (GMOS)
 (IMAGE) (NEEDSFLUXCAL) (OVERSCAN_SUBTRACTED) (OVERSCAN_TRIMMED)
 (PREPARED) (PROCESSED_SCIENCE) (SIDEREAL)

 S20131010S0105_forStack.fits (GEMINI) (SOUTH) (GMOS) (IMAGE)
 (NEEDSFLUXCAL) (OVERSCAN_SUBTRACTED) (OVERSCAN_TRIMMED)
 (PREPARED) (SIDEREAL)

8. Acknowledgments

The Gemini Observatory is operated by the Association of Universities for
Research in Astronomy, Inc., under a cooperative agreement with the NSF on
behalf of the Gemini partnership: the National Science Foundation
(United States), the National Research Council (Canada), CONICYT (Chile),
Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina),
Ministério da Ciência, Tecnologia e Inovação (Brazil), and Korea Astronomy
and Space Science Institute (Republic of Korea).

1. Full Command Line Example

Here we put together several of the tools to show how it can all work, from
beginning to end.

	First create the lists. One for the darks, one for the flats, and one for
the science target.

$ dataselect ../raw/*.fits --tags DARK --expr='exposure_time==20' -o darks20s.lis
$ dataselect ../raw/*.fits --tags FLAT -o flats.lis
$ dataselect ../raw/*.fits --expr='object=="SN2014J"' -o target.lis

	Set the calibration manager and database. First, create or edit the
~/.geminidr/rsys.cfg to look like this:

[calibs]
standalone = True
database_dir = <path_to>/redux_dir/

Then initialize the calibration database.

$ caldb init

	Reduce the darks and add the master dark to the calibration database.

$ reduce @darks20s.lis
$ caldb add N20160102S0423_dark.fits

	Reduce the flats and add the master flat to the calibration database.

$ reduce @flats.lis
$ caldb add N20160102S0373_flat.fits

	Reduce the science target, with some input parameter override.

$ reduce @target.lis -p skyCorrect:scale=False

2. Full API Example

Here we put together several of the tools to show how it can all work, from
beginning to end.

	Import everything we will need.

>>> import glob

>>> from recipe_system.reduction.coreReduce import Reduce
>>> from recipe_system import cal_service

>>> from gempy.utils import logutils
>>> from gempy.adlibrary import dataselect

	Create the file lists. One for the darks, one for the flats, one for the
science target.

>>> all_files = glob.glob('../raw/*.fits')

20 second darks.
>>> expression = 'exposure_time==20'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> darks20s = dataselect.select_data(all_files, ['DARK'], [], parsed_expr)

all the flats
>>> flats = dataselect.select_data(all_files, ['FLAT'])

the science data
>>> expression = 'object=="SN2014J"'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> target = dataselect.select_data(all_files, expression=parsed_expr)

	Set up the calibration manager and database. First, create or edit the
~/.geminidr/rsys.cfg to look like this:

[calibs]
standalone = True
database_dir = <where_you_want_the_database_to_live>/

Then configure and initialize the database, and activate the service:

>>> caldb = cal_service.CalibrationService()
>>> caldb.config()
>>> caldb.init()
>>> cal_service.set_calservice()

	Set up the logger.

>>> logutils.config(file_name='example.log')

	Reduce the darks and add the master dark to the calibration database.

>>> reduce_darks = Reduce()
>>> reduce_darks.files.extend(darks20s)
>>> reduce_darks.runr()

>>> caldb.add_cal(reduce_darks.output_filenames[0])

	Reduce the flats and add the master flats to the calibration database.

>>> reduce_flats = Reduce()
>>> reduce_flats.files.extend(flats)
>>> reduce_flats.runr()

>>> caldb.add_cal(reduce_flats.output_filenames[0])

	Reduce the science target, with some input parameter override.

>>> reduce_target = Reduce()
>>> reduce_target.files.extend(target)
>>> reduce_target.uparms.append(('skyCorrect:scale', False))
>>> reduce_target.runr()

3. Glossary

	astrodata

	Package distributed with the DRAGONS meta-package. astrodata is used
to open datasets and provide an uniform interface to the data and the
metadata (eg. headers) regardless of whether the file on disk is a FITS
file or some other format, whether it is a GMOS file or NIRI file. The
Recipe System relies critically on astrodata.

	AstroData

	Not to be confused with astrodata, this is the base class for
instrument-specific AstroData classes, and the one most users and
developers will interact with at a programmatic level.

	descriptor

	A descriptor is a high-level access to essential dataset metadata
(eg. headers) through a uniform, instrument-independent interface.
E.g., ad.gain(). A descriptor is a method on an AstroData
instance.

	DRAGONS

	Data Reduction for Astronomy from Gemini Observatory North and South.

A suite of packages comprising astrodata, gemini_instruments, the
recipe_system, geminidr, and gempy, which together provide
the full functionality needed to run recipe pipelines on observational
datasets. DRAGONS can be referred to as a framework.

	gempy

	A DRAGONS package comprising various functional utilities, some generic,
some Gemini-specific.

	primitive

	A function defined within a data reduction instrument package that
performs actual work on a dataset. Primitives observe controlled
interfaces in support of re-use of primitives and recipes for different
types of data, when possible. For example, all primitives called
flatCorrect must apply the flat field correction appropriate for
the data, and must have the same set of input parameters. This is a
Gemini Coding Standard; it is not enforced by the Recipe System.

	recipe

	A function defined in a recipe library (module) which defines a sequence
of calls to primitives. A recipe is a simple python function that receives
an instance of the appropriate primitive class (primitive set) and
executes the primitive sequence defined in the recipe function. Users
can pass recipe names directly to reduce.

	Recipe System

	The DRAGONS framework that automates the selection and execution of
recipes and primitives. The Recipe System defines a set of classes that
uses attributes on an astrodata instance to locate recipes and primitives
appropriate to the dataset.

	reduce

	The command line interface to the Recipe System.

	tags [or tagset]

	Represents a data classification. When loaded with AstroData, a
dataset will be classified with a number of tags that describe both the
data and its processing state. The tags are defined in astrodata
packages, eg. the Gemini package is gemini_instruments.

Index

 A
 | D
 | G
 | P
 | R
 | T

A

 	
 	AstroData

 	
 	astrodata

D

 	
 	descriptor

 	
 	DRAGONS

G

 	
 	gempy

P

 	
 	primitive

R

 	
 	recipe

 	
 	Recipe System

 	reduce

T

 	
 	tags [or tagset]

Recipe System Users Manual

Document ID

PIPE-USER-109_RSUserManual

	1. Introduction
	1.1. Overview

	1.2. Further Information

	2. Installation
	2.1. Install Anaconda

	2.2. Install DRAGONS

	2.3. Configure DRAGONS

	2.4. Test the installation

	3. Definitions
	3.1. AstroData Tags

	3.2. Mode

	3.3. Recipe

	3.4. Recipe Library

	3.5. Primitive

	3.6. Primitive Set

	4. The reduce command
	4.1. Introduction

	4.2. Usage Examples

	4.3. Command Line Options and Switches

	4.4. The @file Facility

	5. The Reduce Class
	5.1. Using Reduce

	5.2. Public Attributes to Reduce

	6. Local Calibration Database
	6.1. Configuring caldb

	6.2. Using caldb on the Command Line

	6.3. Using the caldb API

	7. Supplemental tools
	7.1. dataselect

	7.2. showd

	7.3. showrecipes

	7.4. showpars

	7.5. typewalk

	8. Acknowledgments

	3. Glossary

Todo

Update here for Anaconda/astroconda.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dragons-recipe-system-users-manual/checkouts/v3.0.4/recipe_system/doc/rs_UsersManual/notused/appendix_demo.rst, line 12.)

Todo

The new recipe libraries have no reduceDemo recipe.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dragons-recipe-system-users-manual/checkouts/v3.0.4/recipe_system/doc/rs_UsersManual/notused/appendix_demo.rst, line 125.)

Todo

What about remote database?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dragons-recipe-system-users-manual/checkouts/v3.0.4/recipe_system/doc/rs_UsersManual/notused/caldb.rst, line 49.)

adcc

The application that has been historically known as the adcc (Automated
Data Communication Center), is an HTTP proxy server. The webservice provided
by the adcc allows both the Recipe System and primitive functions to post
data produced during data processing. These data comprise image quality and
observing condition metrics, passed to the web server in the form of messages
encapsulating Quality Assessment (QA) metrics data. The metrics themselves are
produced by three specific primitive functions, measureIQ, measuerBG,
and measureCC, which respectively measure image quality, background level,
and cloud cover (measured atmospheric extinction). These QA metrics are the
priniciple product generated by the Quality Assessment Pipeline (QAP), that
provides near real time assessments of observing conditions.

Neither the Recipe System nor the primitives require the adcc to be
running, but if an adcc instance is alive, then QA metrics will be
reported to the service by the QA measurement primitives if they are called.
The adcc provides an interactive web interface and renders metric
“events” in real time. Metrics events are also directly reported to the
Fits Storage and stored in the fitsstore metrics database when the
reduce option, --upload_metrics, is specified.

The adcc is started with the command of the same name, and one may request
the help (or the manpage), in order to see the possible controllers supplied:

$ adcc --help

usage: adcc [-h] [-d] [-v] [--startup-report ADCCSRN] [--http-port HTTPPORT]

Automated Data Communication Center (ADCC), v2.0 (beta)

optional arguments:
 -h, --help Show this help message and exit
 -d, --dark Use the adcc faceplate 'dark' theme.
 -v, --verbose Increase HTTP client messaging on GET requests.
 --startup-report ADCCSRN
 File name for adcc startup report.
 --http-port HTTPPORT Response port for the web interface.
 Default port is 8777.

The application provides a HTTP server that listens on either a user-provided
port number (via --http-port), or the default port of 8777. This webserver
provides an interactive, graphical interface by which users can monitor incoming
metrics that may be reported by recipe system pipelines (recipes), specifically,
the Quality Assurance Pipeline (QAP). It is worth repeating that the near
real-time QAP produces image quality and weather related metrics that are passed
to the adcc as message events. Users wishing to use the adcc to monitor QA
metrics need to simply open a web browser on the service’s URL.

[image: ../_images/adcc_dark_metrics.png]

Snapshot of the Nighttime Metrics GUI, using the “dark” theme and displaying
the metrics retrieved from fitsstore for operational day 20170209.

E.g., In a terminal window, start the adcc with default values:

$ adcc

Or in a terminal window, start the adcc and request the “dark” page theme and
verbosity:

$ adcc -d -v

The -v (verbose) option displays server messages to stdout. These messages
will comprise POST and GET requests made on the server and selected server
responses. These messages are informational only, though may be of some
interest to users.

Once an adcc is up and running, open a browser window on

http://localhost:8777/qap/nighttime_metrics.html

This will render any metrics received from the server for the current
operational day. When metrics are produced and sent to the adcc, the display
will automatically update with the latest metric event. If users are processing
datasets taken on a day prior to the current operational day, the URL to
monitor metrics produced for that day is

http://localhost:8777/qap/nighttime_metrics.html?date=YYYYMMDD

When the adcc is started, certain information is written to a special file in
a .adcc directory that records the process id (pid) of the adcc instance and
port number on which the web server is listening.

Note

Currently, only one adcc instance is permitted to run. Any and all
instances of reduce will report metrics to the currently running instance
of the adcc.

reduce demo

Original demo author: Kathleen Labrie, October 2014

Setting up

Todo

Update here for Anaconda/astroconda.

First install Ureka, which can be obtained at http://ssb.stsci.edu/ureka/.

The second step is to install DRAGONS as described in
Section 2 - Installation. Please do make sure that the
command reduce is in your PATH and that PYTHONPATH includes the
location where the modules astrodata, the recipe_system, and gempy
are installed.

The demo data is distributed separately. You can find the demo data package
gemini_python_datapkg-X1.tar.gz on the Gemini website where you found the
gemini_python package. Unpack the data package somewhere convenient:

tar xvzf gemini_python_datapkg-X1.tar.gz

In there, you will find a subdirectory named data_for_reduce_demo. Those are
the data we will use here. You will also find an empty directory called
playground. This is your playground. The instructions in this demo assume
that you are running the reduce command from that directory. There is no
requirements to run reduce from that directory, but if you want to follow
the demo to the letter, this is where you should be for all the paths to work.

Introduction to the Demo

In this demo, we will reduce a simple dither-on-source GMOS imaging sequence.
We will first process the raw biases, and then the raw twilight flats. We will
then use those processed files to process and stack the science observation.

Instead of the default Quality Assessment (QA) recipe that is used at the Gemini
summits, we will use another recipe that will focus on the reduction rather
than on the multiple measurements of the QA metrics used at night. QA metrics,
here the image quality (IQ), will only be measured at the end of the reduction
rather than throughout the reduction. Another difference between the standard
QA recipe and the demo recipe, is that the demo recipe does stack the data, while
the stacking is turned off in QA mode.

The demo recipe is essentially a Quick Look recipe. It is NOT valid for Science
Quality. Remember that what you are using is a QA pipeline, not a Science
pipeline.

The Recipes

To process the biases and the flats we will be using the standard recipes. The
system will be able to pick those automatically when it recognizes the input data
as GMOS biases and GMOS twilight flats.

For the science data, we will override the recipe selection to use the Demo recipe.
If we were not to override the recipe selection, the system would automatically
select the QA recipe. The Demo recipe is more representative of a standard
Quick-Look reduction with stacking, hence probably more interesting to the reader.

The standard recipe to process GMOS biases is named makeProcessedBias
and contains the instruction set:

recipe_tags = set(['GMOS', 'CAL', 'BIAS'])
def makeProcessedBias(p):
 """
 This recipe performs the standardization and corrections needed to convert
 the raw input bias images into a single stacked bias image. This output
 processed bias is stored on disk using storeProcessedBias and has a name
 equal to the name of the first input bias image with "_bias.fits" appended.

 Parameters

 p : PrimitivesBASE object
 A primitive set matching the recipe_tags.

 """
 p.prepare()
 p.addDQ()
 p.addVAR(read_noise=True)
 p.overscanCorrect()
 p.addToList(purpose="forStack")
 p.getList(purpose="forStack")
 p.stackFrames()
 p.storeProcessedBias()
 return

The standard recipe to process GMOS twilight flats is named makeProcessedFlat
and contains the instruction set:

recipe_tags = set(['GMOS', 'IMAGE', 'CAL', 'FLAT'])
def makeProcessedFlat(p):
 """
 This recipe performs the standardization and corrections needed to
 convert the raw input flat images into a single stacked and normalized
 flat image. This output processed flat is stored on disk using
 storeProcessedFlat and has a name equal to the name of the first input
 flat image with "_flat.fits" appended.

 Parameters

 p : PrimitivesBASE object
 A primitive set matching the recipe_tags.

 """
 p.prepare()
 p.addDQ()
 p.addVAR(read_noise=True)
 p.display()
 p.overscanCorrect()
 p.biasCorrect()
 p.ADUToElectrons()
 p.addVAR(poisson_noise=True)
 p.addToList(purpose="forStack")
 p.getList(purpose="forStack")
 p.stackFlats()
 p.normalizeFlat()
 p.storeProcessedFlat()
 return

Todo

The new recipe libraries have no reduceDemo recipe.

The Demo recipe is named reduceDemo and contains the instruction set:

reduceDemo

p.prepare()
p.addDQ()
p.addVAR(read_noise=True)
p.overscanCorrect()
p.biasCorrect()
p.ADUToElectrons()
p.addVAR(poisson_noise=True)
p.flatCorrect()
p.makeFringe()
p.fringeCorrect()
p.mosaicDetectors()
p.detectSources()
p.addToList(purpose=forStack)
p.getList(purpose=forStack)
p.alignAndStack()
p.detectSources()
p.measureIQ()

For the curious, the standard bias and flat recipes are found in
??? and the demo recipe is in
???demos/. You do not really need that information
as the system will find them on its own.

The Demo

Images will be displayed at times. Therefore, start ds9:

ds9 &

The Processed Bias

The first step is to create the processed bias. We are using the standard
recipe. The system will recognize the inputs as GMOS biases and call the
appropriate recipe automatically.

The biases were taken on different dates around the time of the science
observations. For convenience, we will use a file with the list of datasets
as input instead of listing all the input datasets individually. We will use the
tool, typewalk, to painlessly create the list.

cd <your_path>/gemini_python_datapkg-X1/playground

typewalk --tags GMOS BIAS --dir ../data_for_reduce_demo -o bias.list

reduce @bias.list

This creates the processed bias, N20120202S0955_bias.fits. The output
suffix _bias is the indicator that this is a processed bias. All processed
calibrations are cached in ./calibrations/.

If you wish to see what the processed bias looks like:

reduce N20120202S0955_bias.fits -r display

Note

This will issue an error about the file already existing. Ignore it.
The explanation of what is going on is beyond the scope of this demo. We
will fix this, eventually. Remember that this is a release of software meant
for internal use; there are still plenty of issues to be resolved.*

The Processed Flat

Next we create a processed flat. We will use the processed bias we have
just created. The system will recognize the inputs as GMOS twilight flats and
call the appropriate recipe automatically.

The “public” RecipeSystem does not yet have a Local Calibration Server. Therefore,
we will need to specify the processed bias we want to use on the reduce command
line. For information only, internally the QA pipeline at the summit uses a
central calibration server and the most appropriate processed calibrations available
are selected and retrieved automatically. We hope to be able to offer a “local”,
end-user version of this system in the future. For now, calibrations must be
specified on the command line.

For the flats, we do not really need a list, we can use wild cards:

reduce ../data_for_reduce_demo/N20120123*.fits \
 --user_cal N20120202S0955_bias.fits -p clobber=True;

This creates the processed flat, N20120123S0123_flat.fits. The output suffix
_flat is the indictor that this is a processed flat. The processed flat is
also cached in ./calibrations/.

The clobber parameter is set to True to allow the system to overwrite the final
output. By default, the system refuses to overwrite an output file.

If you wish to see what the processed flat looks like:

reduce N20120123S0123_flat.fits -r display

The Science Frames

We now have all the pieces required to reduce the science frames. This time,
instead of using the standard QA recipe, we will use the Demo recipe. Again,
we will specify the processed calibrations, bias and flat, we wish to use.

reduce ../data_for_reduce_demo/N20120203S028?.fits \
 --user_cal N20120202S0955_bias.fits N20120123S0123_flat.fits \
 -r reduceDemo -p clobber=True

The demo data was obtained with the z’ filter, therefore the images contain fringing.
The makeFringe and fringeCorrect primitives are filter-aware, they will do
something only when the data is from a filter that produces fringing, like the z’
filter. The processed fringe that is created is stored with the other processed
calibrations in ./calibrations/ and it is named N20120203S0281_fringe.fits.
The _fringe suffix indicates a processed fringe.

The last primitive in the recipe is measureIQ which is one of the QA metrics
primitives used at night by the QA pipeline. The primitive selects stars in
the field and measures the average seeing and ellipticity. The image it runs
on is displayed and the selected stars are circled for visual inspections.

The fully processed stacked science image is N20120203S0281_iqMeasured.fits.
By default, the suffix of the final image is set by the last primitive run
on the data, in this case measureIQ.

This default naming can be confusing. If you wish to set the suffix of the
final image yourself, use --suffix _myfinalsuffix.

Clean up

It is good practice to reset the RecipeSystem state when you are done:

superclean --safe

Your files will stay there, only some hidden RecipeSystem directories
and files will be deleted.

caldb

This tools allows you to interact with a local or a remote database where
DRAGONS reduce will look for calibration files. Its basic usage can be
always checked using the --help flag.:

$ caldb --help
usage: caldb [-h] {config,init,list,add,remove} ...

Calibration Database Management Tool

positional arguments:
 {config,init,list,add,remove}
 Sub-command help
 config Display configuration info
 init Create and initialize a new database.
 list List calib files in the current database.
 add Add files to the calibration database. One or more
 files or directories may be specified.
 remove Remove files from the calibration database. One or
 more files may be specified.

optional arguments:
 -h, --help show this help message and exit

One, and only one, positional argument should be provided when calling
caldb.

If this is the first time that you are using DRAGONS, you have to setup either
a local or a remote database. For a local database, create a file called
rsys.cfg within the ~/.geminidr/ directory. The ~ means the user’s
home folder. You can check if you already have one using the following command::

$ cat ~/.geminidr/rsys.cfg
[calibs]
standalone = True
database_dir = ~/.geminidr

If you get an error, you might have to create this directory and/or the file
itself. Its content should be similar to the ones displayed above. The
standalone option tells caldb if you are using a local database (True)
or a remote database (False). If you standalone = True, you have to set
the database_dir to an existing directory where the local database will be
stored (by detault, it is the ~/.geminidr itself).

Todo

What about remote database?

Once you set this file, you have to make caldb read it. You do it using the
following command::

$ caldb config

Using configuration file: ~/.geminidr/rsys.cfg

The active database directory is: /path/to/.geminidr
Thus the database file to be used: /path/to/.geminidr/cal_manager.db

The 'standalone' flag is active, meaning that local calibrations will be used

If everything is fine, you should see the message above.

Now you have to initialize the database. For that, you use::

$ caldb init

If you get an error saying that you cannot initialize an existing database,
you can delete the database local file or wipe it using::

$ caldb init --wipe

This will wipe out the current existing database. You will lose any information
stored there!

After initializing it, you are ready to add new calibration files. For the
current version, you have to add one file per command::

$ caldb add /path/to/calibrations/my_calibration_file.fits
/path/to/.geminidr

This file will be stored in the database and you can check if the operation
succeeded using the list argument::

$ caldb list
/path/to/.geminidr
my_calibration_file.fits /path/to/calibrations/

If needed, you can remove this file from the database using the following
command:

$ caldb remove my_calibration_file.fits
/path/to/.geminidr

Warning

If you want/need to update a file that is already stored within
the database, you will have to remove it and add it again. caldb has
no update tool.

In the works

Fits Storage

In the context of the DRAGONS Recipe System and reduce, FitsStorage provides
a calibration management and association feature. When given a science frame (or
any frame that requires calibration) and a calibration type requested, FitsStorage
is able to automatically choose the best available calibration of the required type
to apply to the science frame. The Recipe System uses a machine-oriented calibration
manager interface in order to select calibration frames to apply as part of pipeline
processing.

The URLs that appear in test_one recipe example (Sec. Test the installation), reference
web services available within the Gemini Observatory’s operational environment.
This specific webservice will not be available directly to users running
reduce outside of the Gemini Observatory environment. Users external to the
Gemini firewall will be able to use a local calibration manager service, which is
a “stand alone” version of the FitsStorage calibration manager.

Local Calibration Service

A local ‘fitsstore’ service will be delivered as part of future Recipe System
releases and will provide the calibration management and association features of
Fits Storage: for use with the public release of the DRAGONS data reduction
package. This feature will provide automatic calibration selection for both pipeline
(recipe) operations and in an interactive processing environment.

Future Enhancements

Intelligence

One enhancement long imagined is what has been generally termed ‘intelligence’.
That is, an ability for either reduce or some utility to automatically do
AstroDataType classification of a set of data, group them appropriately, and
then pass these grouped data to the Recipe System.

As things stand now, it is up to the user to pass commonly typed data to
reduce. As shown in the previous section, typewalk, typewalk
can help a user perform this task and create a ‘ready-to-run’ @file that can
be passed directly to reduce. Properly implemented ‘intelligence’ will
not require the user to determine the AstroData tags of datasets.

How to Use It

Introduction

The reduce command is the DRAGONS Recipe System command line interface.
The Recipe System also provides an application programming interface (API),
whereby users and developers can programmatically invoke Reduce and set
parameters on an instance of that class.

Both interfaces allow users to configure and launch a Recipe System processing
pipeline on one or more input datasets. Control of the Recipe System
on the reduce command line is provided by a variety of options and switches.
All options and switches can also be accessed and controlled through the API.

This chapter will first present details of the reduce command line
interface, including an extended discussion of ???KL The @file Facility. This
is followed by a detailed presentation on the Recipe System’s Reduce
class and it’s Application Programming Interface (API).

The reduce command

Nominal Usage

We begin with the example shown in the Introduction:

$ reduce S20161025S0111.fits

With no command line arguments or other options, a default mode of ‘sq’
is set. Instrument packages provide a default recipe for all instruments when
none is specified by the user. Under DRAGONS, all instrument packages define one
default recipe for each recipe library.

Unless passed an explicit recipe (-r, –recipename) and/or mode flag
(i.e. –qa or –ql), the Recipe System uses the dataset’s astrodata tags attribute
and the Recipe System default mode sq to locate the appropriate recipe to run.

Within the DRAGONS package, sq recipe libraries for a dataset taken
with GMOS are defined in the geminidr package under:

geminidr/
 gmos/
 recipes/
 sq/
 recipes_BIAS.py
 recipes_FLAT_IMAGE.py
 recipes_IMAGE.py

As previously indicated, the reduce command itself is deceptively simple
considering the processing that ensues. This simplicity is outward facing, which
means the complexity is “under the hood,” as reduce and the Reduce class
use the astrodata abstraction to determine the recipes and primitive classes
appropriate to the dataset(s) presented.

Command Options and Switches

The reduce command help is provided by the --help option. This help is
also available as a manual page as (man reduce). Subsequently, further
description and discussion of certain non-trivial options is presented.

 $ reduce --help
 usage: reduce [-h] [-v] [-d] [--adpkg ADPKG] [--drpkg DRPKG]
 [--logfile LOGFILE] [--logmode LOGMODE]
 [-p USERPARAM [USERPARAM ...]] [--qa] [--ql] [-r RECIPENAME]
 [--suffix SUFFIX] [--upload UPLOAD]
 [--user_cal USER_CAL [USER_CAL ...]]
 fitsfile [fitsfile ...]

 _____________________________ Gemini Observatory ____________________________
 ________________ DRAGONS Recipe Processing Management System ________________
 ______________________ Recipe System Release2.0 (beta) ______________________

 positional arguments:
 fitsfile fitsfile [fitsfile ...]

optional arguments:
 -h, --help Show this help message and exit.
 -v, --version Show program's version number and exit.
 -d , --displayflags Display all parsed option flags and exit.
 --adpkg ADPKG Specify an external astrodata definitions package.
 This is only passed for non-Gemini instruments.The
 package must be importable.
 E.g., --adpkg soar_instruments
 --drpkg DRPKG Specify another data reduction (dr) package. The
 package must be importable either through sys.path or
 a user's PYTHONPATH. Recipe System default is 'geminidr'.
 E.g., --drpkg ghostdr.
 --logfile LOGFILE Set name of log file (default is 'reduce.log').
 --logmode LOGMODE Set log mode: 'standard', 'quiet', 'debug'.
 -p USERPARAM [USERPARAM ...], --param USERPARAM [USERPARAM ...]
 Set a parameter from the command line. The form '-p
 par=val' sets a parameter such that all primitives
 with that defined parameter will 'see' it. The form:
 '-p primitivename:par=val', sets the parameter only
 for 'primitivename'. Separate par/val pairs by
 whitespace: (eg. '-p par1=val1 par2=val2').
 --qa Use 'qa' recipes. Default is to use 'sq' recipes.
 --ql Use 'quicklook' recipes. Default is to use 'sq' recipes.
 -r RECIPENAME, --recipe RECIPENAME
 Specify a recipe by name. Users can request non-
 default system recipe functions by their simple names,
 e.g., -r qaStack, can request an explicit primitive
 function name, OR their own recipe file and recipe
 function. A user defined recipe function must be
 'dotted' with the recipe file. E.g.,
 '-r /path/to/recipes/recipefile.recipe_function'.
 For a recipe file in the current working directory,
 only the file name is needed, as in, '-r
 recipefile.recipe_function' The fact that the recipe
 function is dotted with the recipe file name implies
 that multiple user defined recipe functions can be
 defined in a single file.
 --suffix SUFFIX Add 'suffix' to filenames at end of reduction; strip
 all other suffixes marked by '_'.
 --upload UPLOAD Send these pipeline products to fitsstore. Default is
 None. Eg., --upload metrics calibs science
 --user_cal USER_CAL Specify user supplied calibrations for calibration
 types. Eg., --user_cal gsTest_arc.fits .

These options are described in the following sections.

Informational switches

	-h, –help

	show the help message and exit

	-v, –version

	show program’s version number and exit

	-d, –displayflags

	Display all parsed option flags and exit.

When specified, this switch presents a table of all parsed arguments and then
exits. The table provides a convenient view of all passed and default values.
When not specified, ‘recipename’ indicates ‘None’ because at this point the
Recipe System has not been invoked and a default recipe not yet determined.
Eg.,:

$ reduce -d --logmode quiet fitsfile.fits

 Literals var 'dest' Value

 ['-d', '--displayflags'] :: displayflags :: True
 ['-p', '--param'] :: userparam :: None
 ['--logmode'] :: logmode :: quiet
 ['--ql'] :: mode :: sq
 ['--qa'] :: mode :: sq
 ['--upload'] :: upload :: None
 ['-r', '--recipe'] :: recipename :: None
 ['--adpkg'] :: adpkg :: None
 ['--suffix'] :: suffix :: None
 ['--drpkg'] :: drpkg :: geminidr
 ['--user_cal'] :: user_cal :: None
 ['--logfile'] :: logfile :: reduce.log

Input fits file(s): fitsfile.fits

Configuration Switches, Options

	–adpkg <ADPKG>

	Specify an external astrodata definitions package. This is only passed for
non-Gemini instruments.The package must be importable.
E.g., –adpkg soar_instruments

	–logfile <LOGFILE>

	Set the log file name. Default is ‘reduce.log’ in the current directory.

	–logmode <LOGMODE>

	Set logging mode. One of

	standard

	quiet

	debug

‘quiet’ writes only to the log file. Default is ‘standard’.

	–drpkg DRPKG

	Specify an external data reduction (dr) package. The package must be
importable. Default is ‘geminidr’.

E.g., --drpkg ghostdr

When this option is specified, users will see the passed value for
‘drpkg’using the [-d –displayflags] option. We shall also include the
–adpkg option for Ghost data. For the example above:

$ reduce -d --adpkg ghost_instruments --drpkg ghostdr --logmode quiet --qa
 -r display S20150929S0151.fits

 -------------------- switches, vars, vals --------------------

 Literals var 'dest' Value

 ['-d', '--displayflags'] :: displayflags :: True
 ['-p', '--param'] :: userparam :: None
 ['--logmode'] :: logmode :: quiet
 ['--ql'] :: mode :: qa
 ['--qa'] :: mode :: qa
 ['--upload'] :: upload :: None
 ['-r', '--recipe'] :: recipename :: display
 ['--adpkg'] :: adpkg :: ghost_instruments
 ['--suffix'] :: suffix :: None
 ['--drpkg'] :: drpkg :: ghostdr
 ['--user_cal'] :: user_cal :: None
 ['--logfile'] :: logfile :: reduce.log

Input fits file(s): S20150929S0151.fits

	-p <USERPARAM [USERPARAM …]>, –param <USERPARAM [USERPARAM …]>

	Set a primitive parameter from the command line. The form -p par=val sets
the parameter such that all primitives will ‘see’ it. The form

-p primitivename:par=val

sets the parameter such that it applies only when the primitive is
‘primitivename’. Separate parameter-value pairs by whitespace:
(eg. ‘-p par1=val1 par2=val2’)

See Overriding Primitive Parameters, for more information on these values.

	–qa

	Set the mode attribute to ‘qa’. Default is ‘sq’. Note: there is no
--mode option. mode is an attribute on the Reduce class which is
set by the this flag and/or the following --ql flag. See the reduce
example table above.

	–ql

	Set the mode attribute to ‘ql’. Default is ‘sq’. Note: there is no
flag, --mode. mode is an attribute on the Reduce class which is
set by the this flag and/or the previous --qa flag. See the reduce
example table above.

	-r <RECIPENAME>, –recipe <RECIPENAME>

	Specify a recipe by name. Users can request non-default system recipe
functions by their simple names, e.g., -r stack, OR may specify
their own recipe file and recipe function. A user defined recipe function
must be ‘dotted’ with the recipe file.

E.g.

-r /path/to/recipes/recipefile.recipe_function

For a recipe file in the current working directory (cwd), only the file name
is needed

-r recipefile.recipe_function

The fact that the recipe function is dotted with the recipe file name implies
that multiple user recipe functions can be defined in a single file, i.e.
a recipe library.

Readers should understand that these recipe files must be python modules
and named accordingly. That is, in the example above, ‘recipefile’ is a
python module named, 'recipefile.py'

Finally, the specified recipe can be an actual primitive function name:

-r display

and the Recipe System will display the dataset in an open and available
viewer, such as ds9.

	–suffix <SUFFIX>

	Add ‘suffix’ to output filenames at end of reduction.

	–upload

	Send the following pipeline products to fitsstore. Default is None.
E.g.:

--upload metrics calibs

OR equivalently:

--upload=metrics,calibs

	–user_cal <USER_CAL [USER_CAL …]>

	The option allows users to provide their own calibrations to reduce.
Add a calibration to User Calibration Service. The user calibration must include
the calibration type. Only processed calibrations should be specified:

--user_cal processed_arc:wcal/gsTest_arc.fits

Overriding Primitive Parameters

In some cases, users may wish to change the functional behaviour of certain
processing steps, such as changing default parameters of primitive functions.

Each primitive has a set of system-defined parameters, which are used to control
functional behaviour of the primitive. Users can adjust parameter values from the
reduce command line with the option,

-p, –param

Parameters and values specified through the -p, –param option will override
the parameter default value and may alter default behaviour of the
primitive accessing this parameter. A user may pass several parameter-value pairs
with this option.

Eg.:

$ reduce -p operation=mean nhigh=4 nlow=2 S20161025S0111.fits

User-specified parameter values can be focused on one primitive. For example,
if a parameter applies to more than one primitive, like operation, you can
explicitly direct a new parameter value to a particular primitive. The ‘detection
threshold’ has a defined default, but a user may alter this parameter default to
change the source detection behaviour:

$ reduce -p stackFlats:operation=mean nhigh=4 nlow=2 S20161025S0111.fits

How is this command line parsed? The operation parameter for the stackFlats
primitive function is set to mean. All other primitives having an “operation”
parameter are unaffected, while the nhigh and nlow parameters remain
unqualified and applicable to all primitive parameters with the same name.

Because of the complex hierarchy of the geminidr primitive classes and their
associated parameter classes, DRAGONS provides the showpars command line tool
that allows users to view available parameters for a given dataset and primitive
function. For further information and instruction on how to use showpars to
display settable primitive parameters, see
Supplemental Tools, Sec 4.1.

The @file facility

The reduce command line interface supports what might be called an ‘at-file’
facility (users and readers familiar with IRAF will recognize this facility).
An @file allows users to provide any and all command line options and flags
to reduce in an acsii text file. The example command in the previous section
can be written into a file, in whole or in part. Here, we write the desired
parameters to a file called reduce_args.par:

-p
stackFlats:operation=mean
nhigh=4
nlow=2

And now the reduce command looks like,

$ reduce @reduce_args.par S20161025S0111.fits

By passing an @file to reduce on the command line, users can encapsulate
all the options and positional arguments they may wish to specify in a single
@file. It is possible to use multiple @file s and even to embed one or more
@file s in another. The parser opens all files sequentially and parses
all arguments in the same manner as if they were specified on the command line.
Essentially, an @file is some or all of the command line and parsed identically.

To further illustrate the convenience provided by an @file, we’ll continue
with an example reduce command line that has even more arguments. We will
also include new positional arguments, i.e., file names:

$ reduce -p stackFlats:operation=mean nhigh=4 nlow=2
 -r recipe.ArgsTest S20130616S0019.fits N20100311S0090.fits

Ungainly, to be sure. Here, three (3) user parameters are being specified
with -p, a recipe with -r. We can write these parameters into our
plain text @file called reduce_args.par:

S20130616S0019.fits
N20100311S0090.fits
--param
stackFlats:operation=mean
nhigh=4
nlow=2
-r recipe.ArgsTests

This then turns the previous reduce command line into something a little more
keyboard friendly:

$ reduce @reduce_args.par

The order of arguments in an @file is irrelevant, as is the file’s name. The above
file could present the arguments in completely different orders and forms, such as:

-r recipe.ArgsTests
--param
stackFlats:operation=mean
nhigh=4 nlow=2
S20130616S0019.fits
N20100311S0090.fits

Readers will note the two parameters, nhigh, nlow, written on the same line in the
above example. This is perfectly fine and just as you would have it on the command
line. All white space is equivalent to the command line parser. The parser sees no
difference across white space characters, such as space, tab, newline, etc..

Comments are accommodated, both full line and in-line with the #
character. Because all white space is treated identically, the user can
choose to “arrange” their @file for clarity.

Here’s a more readable version of the example file using comments and tabulation:

Gemini Observatory
DRAGONS
reduce parameter file

Spec the recipe
-r
 recipe.ArgsTests # test recipe

primitive parameters here
--param
 stackFlats:operation=mean
 nhigh=4
 nlow=2

S20130616S0019.fits
N20100311S0090.fits

All these example of the reduce_args.par are parsed equivalently, which users
may confirm by adding the -d flag:

$ reduce -d @reduce_args.par

-------------------- switches, vars, vals --------------------

Literals var 'dest' Value

['-d', '--displayflags'] :: displayflags :: True
['-p', '--param'] :: userparam :: ['stackFlats:operation=mean',
 'nhigh=4','nlow=2']
['--logmode'] :: logmode :: standard
['--ql'] :: mode :: sq
['--qa'] :: mode :: sq
['--upload'] :: upload :: None
['-r', '--recipe'] :: recipename :: recipe.ArgsTests
['--adpkg'] :: adpkg :: None
['--suffix'] :: suffix :: None
['--drpkg'] :: drpkg :: geminidr
['--user_cal'] :: user_cal :: None
['--logfile'] :: logfile :: reduce.log

Input fits file(s): S20130616S0019.fits
Input fits file(s): N20100311S0090.fits

Recursive @file processing

As implemented, the @file facility will recursively handle, and process
correctly, other @file specifications that appear in a passed @file or
on the command line. For example, we may have another file containing a
list of fits files, separating reduce options from positional
arguments.

We have a plain text ‘fitsfiles’ file containing the line:

test_data/S20130616S0019.fits

We can indicate that this file is to be consumed with the prefix character
“@” as well:

reduce test parameter file

@fitsfiles # file with fits files

primitive parameters.
--param
stackFlats:operation=mean
nhigh=4
nlow=2

Spec the recipe
-r recipe.ArgTests

The parser will open and read the @fitsfiles, consuming those lines in the
same way as any other command line arguments. Indeed, such a file need not only
contain fits files (positional arguments), but other arguments as well. This is
recursive. That is, the @fitsfiles can contain other “at-files”, which can contain
other “at-files”, which can contain …, etc. These will be processed
serially.

Continuing the example, we’ll name this @file parfile.

As stipulated earlier, because the @file facility provides arguments equivalent
to those that appear on the command line, employment of this facility means that
a reduce command line could assume the form:

$ reduce @parfile @fitsfiles

or equivalently:

$ reduce @fitsfiles @parfile

where ‘parfile’ might contain the flags and user parameters, and ‘fitsfiles’
could contain a list of datasets.

Eg., fitsfiles comprises the one line:

test_data/N20100311S0090.fits

while parfile holds all other specifications:

reduce test parameter file
GDPSG

primitive parameters.
--param
 stackFlats:operation=mean
 nhigh=4
 nlow=2

Spec the recipe
-r recipe.ArgTests

The @file does not need to be located in the current directory. Normal shell
syntax applies, for example:

reduce @../../parfile @fitsfile

Overriding @file values

The reduce application employs a customized command line parser such that
the command line option

-p or –param

will accumulate a set of parameters or override a particular parameter.
This may be seen when a parameter is specified in a user @file and then
specified on the command line. For unitary value arguments, the command line
value will override the @file value.

It is further specified that if one or more datasets (i.e. positional arguments)
are passed on the command line, all fits files appearing as positional arguments
in the parameter file will be replaced by the command line arguments.

Using the parfile above,

Eg. 1) Accumulate a new parameter:

$ reduce @parfile --param FOO=BARSOOM

parsed options:

FITS files: ['S20130616S0019.fits', 'N20100311S0090.fits']
Parameters: stackFlats:operation=mean, nhigh=4, nlow=2, FOO=BARSOOM
RECIPE: recipe.ArgsTest

Eg. 2) Override a parameter in the @file:

$ reduce @parfile --param nhigh=5

parsed options:

FITS files: ['S20130616S0019.fits', 'N20100311S0090.fits']
Parameters: stackFlats:operation=mean, nhigh=5, nlow=2
RECIPE: recipe.ArgsTest

Eg. 3) Override the recipe:

$ reduce @parfile -r recipe.FOO

parsed options:

FITS files: ['S20130616S0019.fits', 'N20100311S0090.fits']
Parameters: stackFlats:operation=mean, nhigh=4, nlow=2
RECIPE: recipe.FOO

Eg. 4) Override a recipe and specify another fits file. The file names in
the @file will be ignored:

$ reduce @parfile -r recipe.FOO test_data/N20100311S0090_1.fits

parsed options:

FITS files: ['test_data/N20100311S0090_1.fits']
Parameters: stackFlats:operation=mean, nhigh=4, nlow=2
RECIPE: recipe.FOO

Application Programming Interface (API)

The Reduce class provide the underlying structure of the reduce command.
This section describes and discusses the programmatic interface available on
the class Reduce. This section is for advanced users wanting to use the
Reduce class programmatically.

The reduce application is essentially a skeleton script providing the
described command line interface. After parsing the command line, the script
then passes the parsed arguments to its main() function, which in turn calls
the Reduce() class constructor with the command line “args”. Programmatically,
one bypasses the reduce command and sets attributes directly on an instance
of Reduce, as the following discussion illustrates.

Class Reduce, the runr() method, and logging

The Reduce class is defined under DRAGONS in the recipe_system.reduction
module, coreReduce.py.

The Reduce class is importable and provides settable attributes and a callable
that can be used programmatically. Callers need not supply an “args” parameter
to the class initializer, i.e. __init__(). An instance of Reduce will have all
the same arguments as in a command line scenario, available as attributes on the
instance. Once an instance of Reduce is instantiated and instance attributes
set as needed, there is one public method to call, runr(). This is the only
public method on the class.

E.g.,

>>> from recipe_system.reduction.coreReduce import Reduce
>>> myreduce = Reduce()
>>> myreduce.files
[]
>>> myreduce.files.append('S20130616S0019.fits')
>>> myreduce.files
['S20130616S0019.fits']

Or callers may simply set the files attribute to be an existing list of files

>>> fits_list = ['FOO.fits', 'BAR.fits']
>>> myreduce.files = fits_list

On the command line, you can specify a recipe with the -r [--recipe]
flag. Programmatically, callers set the recipe directly:

>>> myreduce.recipename = 'recipe.MyRecipe'

All other properties and attributes on the API may be set in standard pythonic
ways. See Appendix Class Reduce: Settable properties and attributes
for further discussion and more examples.

Neither coreReduce nor the Reduce class initializes any logging activity. This
is the responsibility of outside parties, as in the case of the reduce script,
which configures the logging facility before any processing begins. Should you wish
to log the processing steps – probably true – you will have to initialize your
own “logger”. You are free to provide your own logger, or you can use the fully
defined logger provided in DRAGONS. It is recommended that you use this system
logger, as the reduce command line options, and corresponding Reduce attributes,
are tuned to use the DRAGONS logger. You will see logger configuration calls in
the examples below. For details on how to configure the DRAGONS logger, see
Using the logger.

Call the runr() method

Once you are satisfied that all attributes are set to the desired values, and
the logger is configured, the runr() method on the “reduce” instance may then be
called. The following brings the examples above into one “end-to-end” use of
Reduce and logutils:

>>> from recipe_system.reduction.coreReduce import Reduce
>>> from gempy.utils import logutils
>>> logutils.config(file_name='my_reduce_run.log')
>>> reduce = Reduce()
>>> reduce.files.append('S20130616S0019.fits')
>>> reduce.recipename = 'recipe.MyRecipe'
>>> reduce.runr()

All submitted files appear valid
==
RECIPE: recipe.MyRecipe
==
...

Processing will then proceed in the usual manner. Readers will note that
callers need not create more than one Reduce instance in order to call runr()
with a different dataset or options.

Eg.,:

>>> from recipe_system.reduction.coreReduce import Reduce
>>> from gempy.utils import logutils
>>> logutils.config(file_name='my_reduce_run.log')
>>> reduce = Reduce()
>>> reduce.files.append('S20130616S0019.fits')
>>> reduce.recipename = 'recipe.MyRecipe'
>>> reduce.runr()
 ...
reduce completed successfully.

>>> reduce.recipename = 'recipe.NewRecipe'
>>> reduce.files = ['newfile.fits']
>>> reduce.userparam = ['nhigh=5']
>>> reduce.runr()

Once an attribute is set on an instance, such as above with userparam, it is
always set on the instance. If, on another call of runr() the caller does not
wish to change nhigh, simply reset the attribute:

>>> reduce.userparam = []
>>> reduce.runr()

Readers may wish to review the examples in Appendix
Class Reduce: Settable properties and attributes

Using the logger

Note

When using an instance of Reduce() directly, callers must configure
their own logger. Reduce() does not configure logutils prior to using
a logger as returned by logutils.get_logger(). The following discussion
demonstrates how this is easily done. It is highly recommended
that callers configure the logger.

It is recommended that callers of Reduce use a logger supplied by the DRAGONS
module logutils. This module employs the python logger module, but with
recipe system specific features and embellishments. The recipe system and pipelines
defined within DRAGONS will expect to have access to a logutils logger object,
which callers should provide prior to calling the runr() method.

To use logutils, import, configure, and get:

from gempy.utils import logutils
logutils.config(file_name="test.log", mode="standard")
log = logutils.get_logger(__name__)

where __name__ is usually the calling module’s __name__ property, but can
be any string value. Once configured and instantiated, the log object is
ready to use. See section Configuration Switches, Options for logging modes described on the
--logmode option.

The reduce command line provides default values for the configuration of the
logger as described in Sec. Configuration Switches, Options. Users may adjust these values and then
pass them to the logutils.config() function, or pass other values directly
to config(), as shown above. This is precisely what reduce does when it
configures logutils. See Sec. Configuration Switches, Options and
Appendix Class Reduce: Settable properties and attributes for
allowable and default values of these and other options.

Note

logutils.config() may be called mutliply, should callers
want to change logfile names for different calls on runr().

Class Reduce: Settable properties and attributes

The public interface on an instance of the Reduce() class provides a
number of properties and attributes that allow the user to set and reset
options as they might through the reduce command line interface. The following
table is an enumerated set of those attributes.

An instance of Reduce() provides the following attributes. (Note: defaults
are not necessarily indicative of the actual type that is expected on
the instance. Use the type specified in the type column.):

Attribute Python type Default

adinputs <type 'list'> None
drpkg <type 'str'> 'geminidr'
files <type 'list'> []
mode <type 'str'> 'sq'
recipename <type 'str'> 'default'
suffix <type 'str'> None
ucals <type 'dict'> None
uparms <type 'list'> None
upload <type 'list'> None

Examples

Setting attributes on a Reduce instance:

>>> myreduce = Reduce()
>>> myreduce.recipename = "recipe.my_recipe"
>>> myreduce.files = ['UVW.fits', 'XYZ.fits']

Or in other pythonic ways:

>>> file_list = ['FOO.fits', 'BAR.fits']
>>> myreduce.files.extend(file_list)
>>> myreduce.files
['UVW.fits', 'XYZ.fits', 'FOO.fits', 'BAR.fits']

Users wishing to pass primtive parameters to the recipe_system need only set
the one attribute, uparms, on the Reduce instance:

>>> myreduce.uparms = ['nhigh=4']

This is the API equivalent to the command line option:

$ reduce -p nhigh=4 [...]

For muliple primitive parameters, the ‘uparms’ attribute is a list of
‘par=val’ strings, as in:

>>> myreduce.uparms = ['par1=val1', 'par2=val2', ...]

Example function

The following function shows a potential usage of class Reduce. When
(unspecified) conditions are met, the function reduce_conditions_met() is
called passing several lists of files, procfiles (a list of lists of fits
files). Here, each list of procfiles is then passed to the internal
launch_reduce() function.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	from gempy.utils import logutils
from recipe_systenm.reduction.coreReduce import Reduce

def reduce_conditions_are_met(procfiles, control_options=None):
 reduce_object = Reduce()
 reduce_object.uparms = ['nhigh=4']

 # write logfile only, no stdout.
 logutils.config(file_name='my_reduce.log', mode='quiet')

 def launch_reduce(datasets, recipe=None, upload=None):
 reduce_object.files = datasets
 if recipe:
 reduce_object.recipename = recipe

 if upload:
 reduce_object.upload = upload

 reduce_object.mode = 'qa' # request 'qa' recipes
 reduce_object.runr()
 return

 for files in procfiles:
 # Use a different recipe if FOO.fits is present
 if "FOO.fits" in files:
 launch_reduce(sorted(files), recipe="recipe.FOO")
 else:
 launch_reduce(sorted(files), upload=control_options.get('upload'))

 return

procfiles = [['FOO.fits', 'BAR.fits'],
 ['UVW.fits', 'XYZ.fits']
]
if conditions_are_met:
 reduce_conditions_are_met(procfiles, control_options=['metrics'])

Calling reduce_conditions_are_met() without the control_options
parameter will result in the mode attribute being set to 'qa'.

showprims

The showprims command line displays what are the Primitives that
were used within a particular Recipe::

$ showprims raw/S20170505S0073.fits --mode sq --recipe makeProcessedBPM

DRAGONS v2.1.x - show_recipes
Input file: ./raw/S20170505S0073.fits
Input mode: sq
Input recipe: makeProcessedBPM
Matched recipe: geminidr.gsaoi.recipes.sq.recipes_FLAT_IMAGE::makeProcessedBPM
Primitives used:
 p.prepare()
 p.addDQ()
 p.addVAR(read_noise=True, poisson_noise=True)
 p.ADUToElectrons()
 p.selectFromInputs(tags="DARK", outstream="darks")
 p.selectFromInputs(tags="FLAT")
 p.stackFrames(stream="darks")
 p.makeLampFlat()
 p.normalizeFlat()
 p.makeBPM()

As the other commands, you can use the --help or -h flags in the command
line to display the help message.

dataselect

The tool dataselect will help with the bookkeeping and with creating lists
of input files to feed to the Recipe System. The tool has a command line and
an API. This tool finds files that match certain criteria defined through
AstroData Tags and expressions involving AstroData Descriptors.

You can access the basic documentation from the command line by typing:

$ dataselect --help

usage: dataselect [-h] [--tags TAGS] [--xtags XTAGS] [--expr EXPRESSION]
 [--strict] [--output OUTPUT] [--verbose] [--debug]
 inputs [inputs ...]

Find files that matches certain criteria defined by tags and expression
involving descriptors.

positional arguments:
 inputs Input FITS file

optional arguments:
 -h, --help show this help message and exit
 --tags TAGS, -t TAGS Comma-separated list of required tags.
 --xtags XTAGS Comma-separated list of tags to exclude
 --expr EXPRESSION Expression to apply to descriptors (and tags)
 --strict Toggle on strict expression matching for exposure_time
 (not just close) and for filter_name (match component
 number).
 --output OUTPUT, -o OUTPUT
 Name of the output file
 --verbose, -v Toggle verbose mode when using -o
 --debug Toggle debug mode

dataselect Command Line Tool

dataselect accepts list of input files separated by space, and wildcards.
Below are some usage examples.

	This command selects all the FITS files inside the raw directory with a
tag that matches DARK.

$ dataselect raw/*.fits --tags DARK

	To select darks of a specific exposure time:

$ dataselect raw/*.fits --tags DARK --expr='exposure_time==20'

	To send that list to a file that can be used later:

$ dataselect raw/*.fits --tags DARK --expr='exposure_time==20' -o dark20s.lis

	This commands prints all the files in the current directory that do not
have the CAL tag (calibration files).

$ dataselect raw/*.fits --xtags CAL

	The xtags can be used with tags. To select images that are not
flats:

$ dataselect raw/*.fits --tags IMAGE --xtags FLAT

	This command selects all the files with a specific target name:

$ dataselect --expr 'object=="FS 17"' raw/*.fits

	This command selects all the files with an “observation_class” descriptor
that matches the “science” value and a specific exposure time:

$ dataselect --expr '(observation_class=="science" and exposure_time==60.)' raw/*.fits

dataselect API

The same selections presented in the command line section above can be done
from the dataselect API. Here is the API versions of the examples
presented in the previous sections.

The list of files on disk must first be obtained with Python’s glob module.

>>> import glob
>>> all_files = glob.glob('raw/*.fits')

The dataselect module is located in gempy.adlibrary and must first be
imported:

>>> from gempy.adlibrary import dataselect

	This command selects all the FITS files inside the raw directory with a
tag that matches DARK.

>>> all_darks = dataselect.select_data(all_files, ['DARK'])

	To select darks of a specific exposure time:

>>> expression = 'exposure_time==20'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> darks20 = dataselect.select_data(all_files, ['DARK'], [], parsed_expr)

	To send that list to a file that can be used later:

>>> expression = 'exposure_time==20'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> darks20 = dataselect.select_data(all_files, ['DARK'], [], parsed_expr)
>>> with open('dark20s.lis', 'w') as f:
... for filename in dark20:
... f.write(filename + '\n')
...
>>>

Note that the need to send a list of a file on disk will probably not be
very common when using the API as Reduce will take the Python list
directly.

	This commands prints all the files in the current directory that do not
have the CAL tag (calibration files).

>>> non_cals = dataselect.select_data(all_files, [], ['CAL'])

	The xtags can be used with tags. To select images that are not
flats:

>>> has_tags = ['IMAGE']
>>> has_not_tags = ['FLAT']
>>> non_flat_images = dataselect.select_data(all_files, has_tags, has_not_tags)

	This command selects all the files with a specific target name:

>>> expression = 'object="FS 17"'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> stds = dataselect.select_data(all_files, expression=parsed_expr)

	This command selects all the files with an “observation_class” descriptor that
matches the “science” value and a specific exposure time:

>>> expression = '(observation_class=="science" and exposure_time==60.)'
>>> parsed_expr = dataselect.expr_parser(expression)
>>> sci60 = dataselect.select_data(all_files, expression=parsed_expr)

The strict Flag

The strict flag applies to the descriptors exposure_time() and
filter_name(). To keep the user interface more friendly, in the
expressions, the exposure time is matched on a “close enough” principle and
the filter name is matched on a “general bandpass name” principle.

For example, if the exposure time in the header is 10.001 second, from a user’s
perspective, asking to match “10” seconds is a lot nicer, exposure_time==10.
Similarly, asking for the “H”-band filter is more natural than asking for the
“H_G0203” filter.

However, there might be cases where the exposure time or the filter name must
be matched exactly. In such case, the strict flag should be activated.
For example:

$ dataselect raw/*.fits --strict --expr='exposure_time==0.95'

And:

>>> expression = 'exposure_time==0.95'
>>> parsed_expr = dataselect.expr_parser(expression, strict=True)
>>> filelist = dataselect.select_data(all_files, expression=parsed_expr)

showd

The showd command line tool helps the user gather information about files
on disk. The “d” in showd stands for “descriptor”. showd is used to
show the value of specific AstroData descriptors for the files requested.

Its basic usage can be printed using the following command:

$ showd --help
usage: showd [-h] --descriptors DESCRIPTORS [--csv] [--debug]
 [inputs [inputs ...]]

For each input file, show the value of the specified descriptors.

positional arguments:
 inputs Input FITS files

optional arguments:
 -h, --help show this help message and exit
 --descriptors DESCRIPTORS, -d DESCRIPTORS
 comma-separated list of descriptor values to return
 --csv Format as CSV list.
 --debug Toggle debug mode

One or more descriptors can be printed together. Here is an example::

$ showd -d object,exposure_time *.fits
--
filename object exposure_time
--
N20160102S0275.fits SN2014J 20.002
N20160102S0276.fits SN2014J 20.002
N20160102S0277.fits SN2014J 20.002
N20160102S0278.fits SN2014J 20.002
N20160102S0279.fits SN2014J 20.002
N20160102S0295.fits FS 17 10.005
N20160102S0296.fits FS 17 10.005
N20160102S0297.fits FS 17 10.005
N20160102S0298.fits FS 17 10.005
N20160102S0299.fits FS 17 10.005

Above is a human-readable table. It is possible to return a comma-separated
list, CSV list, with the --csv tag:

$ showd -d object,exposure_time *.fits --csv
filename,object,exposure_time
N20160102S0275.fits,SN2014J,20.002
N20160102S0276.fits,SN2014J,20.002
N20160102S0277.fits,SN2014J,20.002
N20160102S0278.fits,SN2014J,20.002
N20160102S0279.fits,SN2014J,20.002
N20160102S0295.fits,FS 17,10.005
N20160102S0296.fits,FS 17,10.005
N20160102S0297.fits,FS 17,10.005
N20160102S0298.fits,FS 17,10.005
N20160102S0299.fits,FS 17,10.005

The showd command also integrates well with dataselect. You can use
dataselect together with showd if you want to print
the descriptors values in a data subset:

$ dataselect raw/*.fits --tag FLAT | showd -d object,exposure_time
--
filename object exposure_time
--
N20160102S0363.fits GCALflat 42.001
N20160102S0364.fits GCALflat 42.001
N20160102S0365.fits GCALflat 42.001
N20160102S0366.fits GCALflat 42.001
N20160102S0367.fits GCALflat 42.001

The “pipe” `` | `` gets the dataselect output and passes it to showd.

showpars

The showpars application is a simple command line utility allowing users
to see the available parameters and defaults for a particular primitive
function applicable to a given dataset. Since the applicable primitives
for a dataset are dependent upon the tagset of the identified dataset
(i.e. NIRI IMAGE , F2 SPECT , GMOS BIAS, etc.), which is
to say, the kind of data we are looking at, the parameters available on a
named primitive function can vary across data types, as can the primitive function
itself. For example, F2 IMAGE stackFlats uses the generic implementation of
the function, while GMOS IMAGE stackFlats overrides that generic method.

We examine the help on the command line of showpars:

$ showpars -h
usage: showpars [-h] [-v] filen primn

Primitive parameter display, v2.2.0

positional arguments:
 filen filename
 primn primitive name

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit

Two arguments are required: the dataset filename, and the primitive name of
interest. As readers will note, showpars provides a wealth of information
about the available parameters on the specified primitive, including allowable
values or ranges of values:

$ showpars S20180516S0237.fits stackFlats
Dataset tagged as set(['RAW', 'GMOS', 'GEMINI', 'SIDEREAL', 'FLAT',
'UNPREPARED', 'IMAGE', 'CAL', 'TWILIGHT', 'SOUTH'])
Settable parameters on 'stackFlats':
==
 Name Current setting

suffix '_stack' Filename suffix
apply_dq True Use DQ to mask bad pixels?
scale False Scale images to the same intensity?
operation 'mean' Averaging operation
Allowed values:
 wtmean variance-weighted mean
 mean arithmetic mean
 median median
 lmedian low-median

reject_method 'minmax' Pixel rejection method
Allowed values:
 minmax reject highest and lowest pixels
 none no rejection
 varclip reject pixels based on variance array
 sigclip reject pixels based on scatter

hsigma 3.0 High rejection threshold (sigma)
 Valid Range = [0,inf)
lsigma 3.0 Low rejection threshold (sigma)
 Valid Range = [0,inf)
mclip True Use median for sigma-clipping?
max_iters None Maximum number of clipping iterations
 Valid Range = [1,inf)
nlow 0 Number of low pixels to reject
 Valid Range = [0,inf)
nhigh 0 Number of high pixels to reject
 Valid Range = [0,inf)
memory None Memory available for stacking (GB)
 Valid Range = [0.1,inf)

With this information, users can adjust parameters for particular primitive
functions. As we have seen already, this can be done from the reduce
command line or the Reduce class. Building on material covered in this
manual, and continuing our example from above::

$ reduce -p stackFlats:nhigh=3 <fitsfiles> [<fitsfile>, ...]

And the reduction proceeds. When the stackFlats primitive begins, the
new value for nhigh will be used.

Note

Advanced User. Inheritance and class overrides within the primitive
and parameter hierarchies means that one cannot simply look at any given
primitive function and its parameters and extrapolate those to all such
named primitives and parameters. Primitives and their parameters are tied
to the particular classes designed for those datasets identified as a
particular kind of data.

showrecipes

The Recipe System will select the best recipe for your data, which
can be overriden when necessary. To see what sequence of primitives a
recipe will execute or which recipes are available for the dataset, one
can use showrecipes.

Show Recipe Content

To see the content of the best-matched default recipes:

$ showrecipes S20170505S0073.fits

Recipe not provided, default recipe (makeProcessedFlat) will be used.
Input file: /path_to/S20170505S0073.fits
Input tags: ['FLAT', 'LAMPOFF', 'AZEL_TARGET', 'IMAGE', 'DOMEFLAT',
'GSAOI', 'RAW', 'GEMINI', 'NON_SIDEREAL', 'CAL', 'UNPREPARED', 'SOUTH']
Input mode: sq
Input recipe: makeProcessedFlat
Matched recipe: geminidr.gsaoi.recipes.sq.recipes_FLAT_IMAGE::makeProcessedFlat
Recipe location: /path_to/dragons/geminidr/gsaoi/recipes/sq/recipes_FLAT_IMAGE.py
Recipe tags: set(['FLAT', 'IMAGE', 'GSAOI', 'CAL'])
Primitives used:
 p.prepare()
 p.addDQ()
 p.nonlinearityCorrect()
 p.ADUToElectrons()
 p.addVAR(read_noise=True, poisson_noise=True)
 p.makeLampFlat()
 p.normalizeFlat()
 p.thresholdFlatfield()
 p.storeProcessedFlat()

To see the content of a specific recipe:

$ showrecipes S20170505S0073.fits -r makeProcessedBPM

Input file: /path_to/S20170505S0073.fits
Input tags: ['FLAT', 'LAMPOFF', 'AZEL_TARGET', 'IMAGE', 'DOMEFLAT',
'GSAOI', 'RAW', 'GEMINI', 'NON_SIDEREAL', 'CAL', 'UNPREPARED', 'SOUTH']
Input mode: sq
Input recipe: makeProcessedBPM
Matched recipe: geminidr.gsaoi.recipes.sq.recipes_FLAT_IMAGE::makeProcessedBPM
Recipe location: /path_to/dragons/geminidr/gsaoi/recipes/sq/recipes_FLAT_IMAGE.pyc
Recipe tags: set(['FLAT', 'IMAGE', 'GSAOI', 'CAL'])
Primitives used:
 p.prepare()
 p.addDQ()
 p.addVAR(read_noise=True, poisson_noise=True)
 p.ADUToElectrons()
 p.selectFromInputs(tags="DARK", outstream="darks")
 p.selectFromInputs(tags="FLAT")
 p.stackFrames(stream="darks")
 p.makeLampFlat()
 p.normalizeFlat()
 p.makeBPM()

Show Index of Available Recipes

Of course in order to ask for a specific recipe, it is useful to know
which recipes are available to the dataset. To see the index of
available recipes:

$ showrecipes S20170505S0073.fits --all

Input file: /path_to/S20170505S0073.fits
Input tags: set(['FLAT', 'LAMPOFF', 'AZEL_TARGET', 'IMAGE', 'DOMEFLAT',
'GSAOI', 'RAW', 'GEMINI', 'NON_SIDEREAL', 'CAL', 'UNPREPARED', 'SOUTH'])
Recipes available for the input file:
 geminidr.gsaoi.recipes.sq.recipes_FLAT_IMAGE::makeProcessedBPM
 geminidr.gsaoi.recipes.sq.recipes_FLAT_IMAGE::makeProcessedFlat
 geminidr.gsaoi.recipes.qa.recipes_FLAT_IMAGE::makeProcessedFlat

The output shows that there are two recipes for the SQ (Science Quality)
mode and one recipe for the QA (Quality Assesment) mode. By default,
the Recipe System uses the SQ mode for processing the data.

As for the other commands, you can use the --help or -h flags on
the command line to display the help message.

typewalk

The typewalk application examines files in a directory or directory tree
and reports the data classifications through the astrodata tag sets. By
default, typewalk will recurse all subdirectories under the current
directory. Users may specify an explicit directory with the -d, --dir
option.

typewalk supports the following options:

-h, --help show this help message and exit
-b BATCHNUM, --batch BATCHNUM
 In shallow walk mode, number of files to process at a
 time in the current directory. Controls behavior in
 large data directories. Default = 100.
-d TWDIR, --dir TWDIR
 Walk this directory and report tags. default is cwd.
-f FILEMASK, --filemask FILEMASK
 Show files matching regex <FILEMASK>. Default is all
 .fits and .FITS files.
-n, --norecurse Do not recurse subdirectories.
--or Use OR logic on 'tags' criteria. If not specified,
 matching logic is AND (See --tags). Eg., --or --tags
 SOUTH GMOS IMAGE will report datasets that are one of
 SOUTH *OR* GMOS *OR* IMAGE.
-o OUTFILE, --out OUTFILE
 Write reported files to this file. Effective only with
 --tags option.
--tags TAGS [TAGS ...]
 Find datasets that match only these tag criteria. Eg.,
 --tags SOUTH GMOS IMAGE will report datasets that are
 all tagged SOUTH *and* GMOS *and* IMAGE.
--xtags XTAGS [XTAGS ...]
 Exclude <xtags> from reporting.

Files are selected and reported through a regular expression mask which,
by default, finds all “.fits” and “.FITS” files. Users can change this mask
with the -f, –filemask option.

As the –tags option indicates, typewalk can find and report data
that match specific tag criteria. For example, a user might want to find
all GMOS image flats (--tags GMOS IMAGE FLAT) under a certain directory.
typewalk will locate and report all datasets that would match the
AstroData tags, set(['GMOS', 'IMAGE', 'FLAT']).

A user may request that an output file be written containing all datasets
matching AstroData tag qualifiers passed by the –tags option. An output
file is specified through the -o, –out option. Output files are
formatted so they may be passed directly to the reduce command line via
that applications ‘at-file’ (@file) facility. See The @file Facility or the reduce
help for more on ‘at-files’. However, for such use, dataselect is
probably preferable as it is more versatile than typewalk.

Users may select tag matching logic with the –or switch. By default,
qualifying logic is AND, i.e. the logic specifies that all tags must be
present (x AND y); –or specifies that ANY tags, enumerated with
–tags, may be present (x OR y). –or is only effective when the
–tags option is specified with more than one tag.

As a simple example, find all F2 SPECT datasets in a directory tree:

$ typewalk --tags SPECT F2

Users may find the –xtags flag useful, as it provides a facility for
filtering results further by allowing certain tags to be excluded from the
report.

For example, find GMOS, IMAGE tag sets, but exclude ACQUISITION images from
reporting:

$ typewalk --tags GMOS IMAGE --xtags ACQUISITION

directory: ../test_data/output
 S20131010S0105.fits (GEMINI) (SOUTH) (GMOS) (IMAGE) (RAW)
 (SIDEREAL) (UNPREPARED)

 S20131010S0105_forFringe.fits (GEMINI) (SOUTH) (GMOS)
 (IMAGE) (NEEDSFLUXCAL) (OVERSCAN_SUBTRACTED) (OVERSCAN_TRIMMED)
 (PREPARED) (PROCESSED_SCIENCE) (SIDEREAL)

 S20131010S0105_forStack.fits (GEMINI) (SOUTH) (GMOS) (IMAGE)
 (NEEDSFLUXCAL) (OVERSCAN_SUBTRACTED) (OVERSCAN_TRIMMED)
 (PREPARED) (SIDEREAL)

 _static/ajax-loader.gif

_images/adcc_dark_metrics.png
Nighttime QA Metri

vighttime_metric

Date prefix: 5201702095
LT Img# Data Label Del1q ZzeniQ Strehl Zwpoint Extinction SkyMag
23:55 165 GS-2017A-Q-24-42-001 1085 - BGAny 0.94+002 0.77+002 - ~ 19272003
00:16 167 GS-2017A-SV-301-26-001 1085 CC{70} BG20 0.67%0.03 0.67%0.03 26.89+0.04 0.14£0.04 13.92£0.04
00:18 168 GS-2017A-5V-301-26-002 ~ cc(100} BG20 ~- - 2059+0.13 2.44+0.13 19.93 +0.05
00:19 169 GS-2017A-5V-301-26-003 007 - BG20 0264000 026 - ~ 1869008

00:54 183 GS-2017A-Q-53-6-002 10707 CC{70,80} BGAny 0.60%0.03 0.530.03 27.88+0.13 0.33£0.13 19.11%0.00
184 GS-2017A-Q-53-6-003 1Q70 CC{80} BGAny 0.57£0.03 0.51%0.02 27.8540.12 0.35+0.12 19.13£0.00
185 GS-2017A-Q-53-6-004 10701 CC{70,80} BGAny 0.58%0.02 0.52%0.02 27.85+0.12 0.35£0.12 19.12 0.0
187 GS-2017A-Q-53-6-006 120 CC{70,80) BGAny 0.530.03 0.48%0.02 27.88+0.13 0.32+0.13 19.15 +0.00
189 GS-2017A-Q-53-6-008. 1Q70 1 CC{70,80} BGAny (0.57%0.03 0.530.02 27.91£0.14 0.29£0.14 19.18 0.0
192 GS-2017A-Q-53-6-011 i 1020 ' CC{70,80} BGAny 0.53£0.02 0.49%0.02 27.87£0.13 0.33£0.13 19.20 £ 0.00
193 GS2017A.Q33-17001 W 1Q70 | CC{S070) BG20 0.61%002 0.59%002 26894 0.04 0.1450.04 13.88£0.02

194 GS2017A-Q-33-17-002 H 1070 CC{50,70} BG20 0.57+003 0.56%0.03 26.89+0.03 0.14+0.03 13.85+0.04

Disiagns 30350 CEE—

Messages for image 182, GS-2017A-Q-53-6-001: | WARNING: CC requirement not met at the 95% confidence level

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Recipe System User Manual

 		
 Introduction

 		
 Overview

 		
 Further Information

 		
 Installation

 		
 Install Anaconda

 		
 Install DRAGONS

 		
 Configure DRAGONS

 		
 Test the installation

 		
 Definitions

 		
 AstroData Tags

 		
 Mode

 		
 Recipe

 		
 Recipe Library

 		
 Primitive

 		
 Primitive Set

 		
 The reduce command

 		
 Introduction

 		
 Usage Examples

 		
 Nominal usage

 		
 Overriding Primitive Parameters

 		
 Calling Specific Recipes and Primitives

 		
 Manually Setting Calibrations

 		
 Command Line Options and Switches

 		
 Information Switches

 		
 Configuration Switches and Options

 		
 The @file Facility

 		
 Basic @file Usage

 		
 Recursive @file Usage

 		
 Overriding @file Values

 		
 The Reduce Class

 		
 Using Reduce

 		
 Very Basic Usage

 		
 Typical Usage for Reduction

 		
 Public Attributes to Reduce

 		
 Local Calibration Database

 		
 Configuring caldb

 		
 Using caldb on the Command Line

 		
 Using the caldb API

 		
 Supplemental tools

 		
 dataselect

 		
 dataselect Command Line Tool

 		
 dataselect API

 		
 The strict Flag

 		
 showd

 		
 showrecipes

 		
 Show Recipe Content

 		
 Show Index of Available Recipes

 		
 showpars

 		
 typewalk

 		
 Acknowledgments

 		
 Full Command Line Example

 		
 Full API Example

 		
 Glossary

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

